Cargando…
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
In this work, we investigated two issues: (1) How the fusion of lidar and camera data can improve semantic segmentation performance compared with the individual sensor modalities in a supervised learning context; and (2) How fusion can also be leveraged for semi-supervised learning in order to furth...
Autores principales: | Caltagirone, Luca, Bellone, Mauro, Svensson, Lennart, Wahde, Mattias, Sell, Raivo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309822/ https://www.ncbi.nlm.nih.gov/pubmed/34300551 http://dx.doi.org/10.3390/s21144813 |
Ejemplares similares
-
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
por: Najafian, Keyhan, et al.
Publicado: (2023) -
Semi-Supervised Learning to Identify UMLS Semantic Relations
por: Luo, Yuan, et al.
Publicado: (2014) -
Feature-enhanced adversarial semi-supervised semantic segmentation network for pulmonary embolism annotation
por: Cheng, Ting-Wei, et al.
Publicado: (2023) -
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
por: Pagano, Lucas, et al.
Publicado: (2023)