Cargando…
A Hybrid Deep Learning-Driven SDN Enabled Mechanism for Secure Communication in Internet of Things (IoT)
The Internet of Things (IoT) has emerged as a new technological world connecting billions of devices. Despite providing several benefits, the heterogeneous nature and the extensive connectivity of the devices make it a target of different cyberattacks that result in data breach and financial loss. T...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309860/ https://www.ncbi.nlm.nih.gov/pubmed/34300623 http://dx.doi.org/10.3390/s21144884 |
Sumario: | The Internet of Things (IoT) has emerged as a new technological world connecting billions of devices. Despite providing several benefits, the heterogeneous nature and the extensive connectivity of the devices make it a target of different cyberattacks that result in data breach and financial loss. There is a severe need to secure the IoT environment from such attacks. In this paper, an SDN-enabled deep-learning-driven framework is proposed for threats detection in an IoT environment. The state-of-the-art Cuda-deep neural network, gated recurrent unit (Cu- DNNGRU), and Cuda-bidirectional long short-term memory (Cu-BLSTM) classifiers are adopted for effective threat detection. We have performed 10 folds cross-validation to show the unbiasedness of results. The up-to-date publicly available CICIDS2018 data set is introduced to train our hybrid model. The achieved accuracy of the proposed scheme is 99.87%, with a recall of 99.96%. Furthermore, we compare the proposed hybrid model with Cuda-Gated Recurrent Unit, Long short term memory (Cu-GRULSTM) and Cuda-Deep Neural Network, Long short term memory (Cu- DNNLSTM), as well as with existing benchmark classifiers. Our proposed mechanism achieves impressive results in terms of accuracy, F1-score, precision, speed efficiency, and other evaluation metrics. |
---|