Cargando…

Underwater Holographic Sensor for Plankton Studies In Situ including Accompanying Measurements

The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verifica...

Descripción completa

Detalles Bibliográficos
Autores principales: Dyomin, Victor, Davydova, Alexandra, Polovtsev, Igor, Olshukov, Alexey, Kirillov, Nikolay, Davydov, Sergey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309876/
https://www.ncbi.nlm.nih.gov/pubmed/34300611
http://dx.doi.org/10.3390/s21144863
Descripción
Sumario:The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verification is performed. Errors of measurements and classification of plankton particles are estimated. MiniDHC allows measurement of the following set of background data, which is confirmed by field tests: plankton concentration, average size and size dispersion of individuals, particle size distribution, including on major taxa, as well as water turbidity and suspension statistics. Version of constructing measuring systems based on modern carriers of operational oceanography for the purpose of ecological diagnostics of the world ocean using autochthonous plankton are discussed. The results of field measurements of plankton using miniDHC as part of a hydrobiological probe are presented and interpreted, and their verification is carried out. The results of comparing the data on the concentration of individual taxa obtained using miniDHC with the data obtained by the traditional method using plankton catching with a net showed a difference of no more than 23%. The article also contains recommendations for expanding the potential of miniDHC, its purpose indicators, and improving metrological characteristics.