Cargando…
Effectiveness of Robotic Exoskeleton-Assisted Gait Training in Spinocerebellar Ataxia: A Case Report
Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disorder that presents as ataxia. Due to the decline in balance, patients with SCA often experience restricted mobility and a decreased quality of life. Thus, many studies have emphasized the importance of physiotherapies, including gait...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309925/ https://www.ncbi.nlm.nih.gov/pubmed/34300613 http://dx.doi.org/10.3390/s21144874 |
Sumario: | Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disorder that presents as ataxia. Due to the decline in balance, patients with SCA often experience restricted mobility and a decreased quality of life. Thus, many studies have emphasized the importance of physiotherapies, including gait training, in SCA patients. However, few studies have examined the effectiveness of robotic gait training in SCA. Here, we report the therapeutic outcomes of exoskeleton-assisted gait training in a patient with SCA. A 23-year-old woman with SCA participated in a gait training program using a powered lower-limb robotic exoskeleton, ANGELLEGS. The 8-week training program consisted of standing training, weight-shifting exercises, and gait training. Several measures of general function, balance, gait, and cardiopulmonary function were applied before, after, and 4 weeks after the program. After the program, overall improvements were found on scales measuring balance and gait function, and these improvements remained at 4 weeks after the program. Cardiopulmonary function was also improved 4 weeks after the program. Robotic exoskeleton gait training can be a beneficial option for training balance, gait, and cardiopulmonary function in SCA. |
---|