Cargando…
Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network
The paper proposes a new method for deep learning and knowledge discovery in a brain-inspired Spiking Neural Networks (SNN) architecture that enhances the model’s explainability while learning from streaming spatiotemporal brain data (STBD) in an incremental and on-line mode of operation. This led t...
Autores principales: | Doborjeh, Maryam, Doborjeh, Zohreh, Kasabov, Nikola, Barati, Molood, Wang, Grace Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309947/ https://www.ncbi.nlm.nih.gov/pubmed/34300640 http://dx.doi.org/10.3390/s21144900 |
Ejemplares similares
-
Modelling Peri-Perceptual Brain Processes in a Deep Learning Spiking Neural Network Architecture
por: Gholami Doborjeh, Zohreh, et al.
Publicado: (2018) -
Prediction of Acoustic Residual Inhibition of Tinnitus Using a Brain-Inspired Spiking Neural Network Model
por: Sanders, Philip J., et al.
Publicado: (2021) -
Interpretability of Spatiotemporal Dynamics of the Brain Processes Followed by Mindfulness Intervention in a Brain-Inspired Spiking Neural Network Architecture
por: Doborjeh, Zohreh, et al.
Publicado: (2020) -
Spiking Neural Network Modelling Approach Reveals How Mindfulness Training Rewires the Brain
por: Doborjeh, Zohreh, et al.
Publicado: (2019) -
Constrained neuro fuzzy inference methodology for explainable personalised modelling with applications on gene expression data
por: Singh, Balkaran, et al.
Publicado: (2023)