Cargando…

A Quantitative ELISA Protocol for Detection of Specific Human IgG against the SARS-CoV-2 Spike Protein

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with at least 3.8 million deaths to date. For that reason, finding an efficient vaccine for this virus quickly became a global priority. The majority of vaccines now marketed are based on the SARS-CoV-2 spik...

Descripción completa

Detalles Bibliográficos
Autores principales: Vernet, Rémi, Charrier, Emily, Grogg, Julien, Mach, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309958/
https://www.ncbi.nlm.nih.gov/pubmed/34358186
http://dx.doi.org/10.3390/vaccines9070770
Descripción
Sumario:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with at least 3.8 million deaths to date. For that reason, finding an efficient vaccine for this virus quickly became a global priority. The majority of vaccines now marketed are based on the SARS-CoV-2 spike protein that has been described as the keystone for optimal immunization. In order to monitor SARS-CoV-2 spike-specific humoral responses generated by immunization or infection, we have developed a robust and reproducible enzyme-linked immunosorbent assay (ELISA) protocol. This protocol describes a method for quantitative detection of IgG antibodies against the SARS-CoV-2 spike protein using antigen-coated microtiter plates. Results showed that antibodies could be quantified between the range of 1.953 ng/mL to 500 ng/mL with limited inter- and intra-assay variability.