Cargando…

Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer

Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an indi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hishinuma, Eiji, Shimada, Muneaki, Matsukawa, Naomi, Saigusa, Daisuke, Li, Bin, Kudo, Kei, Tsuji, Keita, Shigeta, Shogo, Tokunaga, Hideki, Kumada, Kazuki, Komine, Keigo, Shirota, Hidekazu, Aoki, Yuichi, Motoike, Ikuko N., Yasuda, Jun, Kinoshita, Kengo, Yamamoto, Masayuki, Koshiba, Seizo, Yaegashi, Nobuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309959/
https://www.ncbi.nlm.nih.gov/pubmed/34209281
http://dx.doi.org/10.3390/toxins13070461
_version_ 1783728645829820416
author Hishinuma, Eiji
Shimada, Muneaki
Matsukawa, Naomi
Saigusa, Daisuke
Li, Bin
Kudo, Kei
Tsuji, Keita
Shigeta, Shogo
Tokunaga, Hideki
Kumada, Kazuki
Komine, Keigo
Shirota, Hidekazu
Aoki, Yuichi
Motoike, Ikuko N.
Yasuda, Jun
Kinoshita, Kengo
Yamamoto, Masayuki
Koshiba, Seizo
Yaegashi, Nobuo
author_facet Hishinuma, Eiji
Shimada, Muneaki
Matsukawa, Naomi
Saigusa, Daisuke
Li, Bin
Kudo, Kei
Tsuji, Keita
Shigeta, Shogo
Tokunaga, Hideki
Kumada, Kazuki
Komine, Keigo
Shirota, Hidekazu
Aoki, Yuichi
Motoike, Ikuko N.
Yasuda, Jun
Kinoshita, Kengo
Yamamoto, Masayuki
Koshiba, Seizo
Yaegashi, Nobuo
author_sort Hishinuma, Eiji
collection PubMed
description Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s current phenotype. In particular, plasma metabolome analyses can be useful for biomarker identification. In this study, we analyzed 624 metabolites, including uremic toxins (UTx) in plasma derived from 80 patients with EOC using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the healthy control, we detected 77 significantly increased metabolites and 114 significantly decreased metabolites in EOC patients. Especially, decreased concentrations of lysophosphatidylcholines and phosphatidylcholines and increased concentrations of triglycerides were observed, indicating a metabolic profile characteristic of EOC patients. After calculating the parameters of each metabolic index, we found that higher ratios of kynurenine to tryptophan correlates with worse prognosis in EOC patients. Kynurenine, one of the UTx, can affect the prognosis of EOC. Our results demonstrated that plasma metabolome analysis is useful not only for the diagnosis of EOC, but also for predicting prognosis with the variation of UTx and evaluating response to chemotherapy.
format Online
Article
Text
id pubmed-8309959
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83099592021-07-25 Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer Hishinuma, Eiji Shimada, Muneaki Matsukawa, Naomi Saigusa, Daisuke Li, Bin Kudo, Kei Tsuji, Keita Shigeta, Shogo Tokunaga, Hideki Kumada, Kazuki Komine, Keigo Shirota, Hidekazu Aoki, Yuichi Motoike, Ikuko N. Yasuda, Jun Kinoshita, Kengo Yamamoto, Masayuki Koshiba, Seizo Yaegashi, Nobuo Toxins (Basel) Article Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s current phenotype. In particular, plasma metabolome analyses can be useful for biomarker identification. In this study, we analyzed 624 metabolites, including uremic toxins (UTx) in plasma derived from 80 patients with EOC using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the healthy control, we detected 77 significantly increased metabolites and 114 significantly decreased metabolites in EOC patients. Especially, decreased concentrations of lysophosphatidylcholines and phosphatidylcholines and increased concentrations of triglycerides were observed, indicating a metabolic profile characteristic of EOC patients. After calculating the parameters of each metabolic index, we found that higher ratios of kynurenine to tryptophan correlates with worse prognosis in EOC patients. Kynurenine, one of the UTx, can affect the prognosis of EOC. Our results demonstrated that plasma metabolome analysis is useful not only for the diagnosis of EOC, but also for predicting prognosis with the variation of UTx and evaluating response to chemotherapy. MDPI 2021-06-30 /pmc/articles/PMC8309959/ /pubmed/34209281 http://dx.doi.org/10.3390/toxins13070461 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hishinuma, Eiji
Shimada, Muneaki
Matsukawa, Naomi
Saigusa, Daisuke
Li, Bin
Kudo, Kei
Tsuji, Keita
Shigeta, Shogo
Tokunaga, Hideki
Kumada, Kazuki
Komine, Keigo
Shirota, Hidekazu
Aoki, Yuichi
Motoike, Ikuko N.
Yasuda, Jun
Kinoshita, Kengo
Yamamoto, Masayuki
Koshiba, Seizo
Yaegashi, Nobuo
Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
title Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
title_full Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
title_fullStr Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
title_full_unstemmed Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
title_short Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
title_sort wide-targeted metabolome analysis identifies potential biomarkers for prognosis prediction of epithelial ovarian cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309959/
https://www.ncbi.nlm.nih.gov/pubmed/34209281
http://dx.doi.org/10.3390/toxins13070461
work_keys_str_mv AT hishinumaeiji widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT shimadamuneaki widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT matsukawanaomi widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT saigusadaisuke widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT libin widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT kudokei widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT tsujikeita widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT shigetashogo widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT tokunagahideki widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT kumadakazuki widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT kominekeigo widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT shirotahidekazu widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT aokiyuichi widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT motoikeikukon widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT yasudajun widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT kinoshitakengo widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT yamamotomasayuki widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT koshibaseizo widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer
AT yaegashinobuo widetargetedmetabolomeanalysisidentifiespotentialbiomarkersforprognosispredictionofepithelialovariancancer