Cargando…
Noninvasive time-sorting in radio frequency-compressed ultrafast electron diffraction
We demonstrate a noninvasive time-sorting method for ultrafast electron diffraction (UED) experiments with radio frequency (rf)-compressed electron beams. We show that electron beam energy and arrival time at the sample after the rf compression are strongly correlated, such that the arrival time jit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Crystallographic Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310431/ https://www.ncbi.nlm.nih.gov/pubmed/34327258 http://dx.doi.org/10.1063/4.0000113 |
Sumario: | We demonstrate a noninvasive time-sorting method for ultrafast electron diffraction (UED) experiments with radio frequency (rf)-compressed electron beams. We show that electron beam energy and arrival time at the sample after the rf compression are strongly correlated, such that the arrival time jitter may be corrected through the measurement of the beam energy. The method requires minimal change to the infrastructure of most of the UED machines and is applicable to both keV and MeV UED. In our experiment with ∼3 MeV beam, the timing jitter after the rf compression is corrected with a 35-fs root mean square (rms) accuracy, limited by the [Formula: see text] energy stability. For keV UED with a high energy stability, sub-10 fs accuracy in time-sorting should be readily achievable. This time-sorting technique allows us to retrieve the 2.5 THz oscillation related to coherent A(1g) phonon in the laser-excited Bismuth film and extends the temporal resolution of UED to a regime far beyond the 100–200 fs rms jitter limitation. |
---|