Cargando…
Deep Unsupervised Hashing for Large-Scale Cross-Modal Retrieval Using Knowledge Distillation Model
Cross-modal hashing encodes heterogeneous multimedia data into compact binary code to achieve fast and flexible retrieval across different modalities. Due to its low storage cost and high retrieval efficiency, it has received widespread attention. Supervised deep hashing significantly improves searc...
Autores principales: | Li, Mingyong, Li, Qiqi, Tang, Lirong, Peng, Shuang, Ma, Yan, Yang, Degang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310450/ https://www.ncbi.nlm.nih.gov/pubmed/34326867 http://dx.doi.org/10.1155/2021/5107034 |
Ejemplares similares
-
CLIP-Based Adaptive Graph Attention Network for Large-Scale Unsupervised Multi-Modal Hashing Retrieval
por: Li, Yewen, et al.
Publicado: (2023) -
Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
por: Cheng, Shuli, et al.
Publicado: (2020) -
Object-Level Visual-Text Correlation Graph Hashing for Unsupervised Cross-Modal Retrieval
por: Shi, Ge, et al.
Publicado: (2022) -
Hierarchical semantic interaction-based deep hashing network for cross-modal retrieval
por: Chen, Shubai, et al.
Publicado: (2021) -
Semantics-Reconstructing Hashing for Cross-Modal Retrieval
por: Zhang, Peng-Fei, et al.
Publicado: (2020)