Cargando…
Comparative chloroplast genome analysis of Impatiens species (Balsaminaceae) in the karst area of China: insights into genome evolution and phylogenomic implications
BACKGROUND: Impatiens L. is a genus of complex taxonomy that belongs to the family Balsaminaceae (Ericales) and contains approximately 1000 species. The genus is well known for its economic, medicinal, ornamental, and horticultural value. However, knowledge about its germplasm identification, molecu...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310579/ https://www.ncbi.nlm.nih.gov/pubmed/34303345 http://dx.doi.org/10.1186/s12864-021-07807-8 |
Sumario: | BACKGROUND: Impatiens L. is a genus of complex taxonomy that belongs to the family Balsaminaceae (Ericales) and contains approximately 1000 species. The genus is well known for its economic, medicinal, ornamental, and horticultural value. However, knowledge about its germplasm identification, molecular phylogeny, and chloroplast genomics is limited, and taxonomic uncertainties still exist due to overlapping morphological features and insufficient genomic resources. RESULTS: We sequenced the chloroplast genomes of six different species (Impatiens chlorosepala, Impatiens fanjingshanica, Impatiens guizhouensis, Impatiens linearisepala, Impatiens loulanensis, and Impatiens stenosepala) in the karst area of China and compared them with those of six previously published Balsaminaceae species. We contrasted genomic features and repeat sequences, assessed sequence divergence and constructed phylogenetic relationships. Except for those of I. alpicola, I. pritzelii and I. glandulifera, the complete chloroplast genomes ranging in size from 151,366 bp (I. alpicola) to 154,189 bp (Hydrocera triflora) encoded 115 distinct genes [81 protein-coding, 30 transfer RNA (tRNA), and 4 ribosomal RNA (rRNA) genes]. Moreover, the characteristics of the long repeat sequences and simple sequence repeats (SSRs) were determined. psbK-psbI, trnT-GGU-psbD, rpl36-rps8, rpoB-trnC-GCA, trnK-UUU-rps16, trnQ-UUG, trnP-UGG-psaJ, trnT-UGU-trnL-UAA, and ycf4-cemA were identified as divergence hotspot regions and thus might be suitable for species identification and phylogenetic studies. Additionally, the phylogenetic relationships based on Maximum likelihood (ML) and Bayesian inference (BI) of the whole chloroplast genomes showed that the chloroplast genome structure of I. guizhouensis represents the ancestral state of the Balsaminaceae family. CONCLUSION: Our study provided detailed information about nucleotide diversity hotspots and the types of repeats, which can be used to develop molecular markers applicable to Balsaminaceae species. We also reconstructed and analyzed the relationships of some Impatiens species and assessed their taxonomic statuses based on the complete chloroplast genomes. Together, the findings of the current study might provide valuable genomic resources for systematic evolution of the Balsaminaceae species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-021-07807-8. |
---|