Cargando…

Polystyrene and Polyethylene Microplastics Decrease Cell Viability and Dysregulate Inflammatory and Oxidative Stress Markers of MDCK and L929 Cells In Vitro

Microplastics are ubiquitous environmental pollutants that are a growing concern to many ecosystems, as well as human health. Many of the effects of microplastics on mammalian cells and tissues remain unknown. To address this, we treated L929 murine fibroblasts and Madin–Darby canine kidney (MDCK) e...

Descripción completa

Detalles Bibliográficos
Autores principales: Palaniappan, Swetha, Sadacharan, Chakravarthy Marx, Rostama, Bahman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310682/
https://www.ncbi.nlm.nih.gov/pubmed/34337190
http://dx.doi.org/10.1007/s12403-021-00419-3
Descripción
Sumario:Microplastics are ubiquitous environmental pollutants that are a growing concern to many ecosystems, as well as human health. Many of the effects of microplastics on mammalian cells and tissues remain unknown. To address this, we treated L929 murine fibroblasts and Madin–Darby canine kidney (MDCK) epithelial cell lines with 1 μg/mL, 10 μg/mL, or 20 μg/mL of polyethylene (PE) or polystyrene (PS) microspheres in vitro for 6 and 24 h and measured the resulting changes in cell viability, metabolism, and transcriptional expression of inflammatory cytokines and antioxidant enzymes. We observed dose-dependent decreases in cell viability corresponding to increases in doses of both PE and PS. We conducted cell metabolism assays and observed dose-dependent increases in metabolism per cell with increasing doses of both PE and PS. Similarly, we also observed increased expression of the superoxide dismutase-3 gene (SOD3), indicating oxidative stress caused by the microplastics treatments. We also observed increased expression of TNFα, but decreased expression of IFNβ, suggesting different mechanisms by which the microplastics regulate inflammatory responses in mammalian cells. Our results contribute new data to the growing understanding of the effects of microplastics on mammalian cells and indicate complex cellular stress responses to microplastics in the environment.