Cargando…
RT-LAMP: A Cheaper, Simpler and Faster Alternative for the Detection of SARS-CoV-2 in Wastewater
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has the potential to become a cheaper and faster option for monitoring COVID-19 infections through wastewater-based epidemiology. However, its application in COVID-19 surveillance has been limited to clinical testing only. We pre...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310731/ https://www.ncbi.nlm.nih.gov/pubmed/34308531 http://dx.doi.org/10.1007/s12560-021-09489-7 |
Sumario: | Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has the potential to become a cheaper and faster option for monitoring COVID-19 infections through wastewater-based epidemiology. However, its application in COVID-19 surveillance has been limited to clinical testing only. We present in this paper two optimized RT-LAMP protocols based on colour change and fluorescence detection and application of these protocols for wastewater monitoring from four wastewater treatment plants over 4 weeks. The optimized RT-LAMP protocols have a limit of detection of 10 copies/25 µl reaction with positive amplification within 35 minutes. Over the 4 weeks of monitoring, the colorimetric protocol detected a prevalence of 12.5%, when 1 µl of extracted RNA with 92.7(± 28.2) ng/µl concentration was analysed. When the RNA template was increased by fivefold, the prevalence increased to 44%. The fluorescent RT-LAMP had a prevalence of 31% and 47% for starting templates of 92.7(± 28.2) ng/µl and 480(± 134.5) ng/µl of the extracted RNA, respectively. All samples were positive for SARS-CoV-2 when analysed with droplet digital PCR, with viral loads ranging from 18.1 to 195.6 gc/ml of wastewater. The RT-ddPCR, therefore, confirms the presence of the viral RNA in the wastewater samples, albeit at low concentrations. Additionally, the RT-LAMP protocols positively detected SARS-CoV-2 in wastewater samples with copies as low as 20.7 gc/ml. The results obtained in our study show the potential application of RT-LAMP for the detection of SARS-CoV-2 in wastewater, which could provide a cheaper and faster alternative to RT-qPCR or RT-ddPCR for wastewater-based epidemiological monitoring of COVID-19 and other viral infections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12560-021-09489-7. |
---|