Cargando…
Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography
To minimize radiation risk, dose reduction is important in the diagnostic and therapeutic applications of computed tomography (CT). However, image noise degrades image quality owing to the reduced X-ray dose and a possible unacceptably reduced diagnostic performance. Deep learning approaches with co...
Autores principales: | Usui, Keisuke, Ogawa, Koichi, Goto, Masami, Sakano, Yasuaki, Kyougoku, Shinsuke, Daida, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310822/ https://www.ncbi.nlm.nih.gov/pubmed/34304321 http://dx.doi.org/10.1186/s42492-021-00087-9 |
Ejemplares similares
-
A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images
por: Usui, Keisuke, et al.
Publicado: (2022) -
Evaluation of motion artefact reduction depending on the artefacts’ directions in head MRI using conditional generative adversarial networks
por: Usui, Keisuke, et al.
Publicado: (2023) -
Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
por: Fotiadou, Eleni, et al.
Publicado: (2020) -
Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2022) -
Author Correction: Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2023)