Cargando…
A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125
BACKGROUND: To evaluate the performance of a decision support system (DSS) based on radiomics and machine learning in predicting the risk of malignancy of ovarian masses (OMs) from transvaginal ultrasonography (TUS) and serum CA-125. METHODS: A total of 274 consecutive patients who underwent TUS (by...
Autores principales: | Chiappa, Valentina, Interlenghi, Matteo, Bogani, Giorgio, Salvatore, Christian, Bertolina, Francesca, Sarpietro, Giuseppe, Signorelli, Mauro, Ronzulli, Dominique, Castiglioni, Isabella, Raspagliesi, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310829/ https://www.ncbi.nlm.nih.gov/pubmed/34308487 http://dx.doi.org/10.1186/s41747-021-00226-0 |
Ejemplares similares
-
Using Radiomics and Machine Learning Applied to MRI to Predict Response to Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer
por: Chiappa, Valentina, et al.
Publicado: (2023) -
Radiomics and Molecular Classification in Endometrial Cancer (The ROME Study): A Step Forward to a Simplified Precision Medicine
por: Bogani, Giorgio, et al.
Publicado: (2022) -
Morcellation of apparent benign uterine myoma: assessing risk to benefit ratio
por: Bogani, Giorgio, et al.
Publicado: (2016) -
Sentinel lymph node detection in endometrial cancer: does injection site make a difference?
por: Bogani, Giorgio, et al.
Publicado: (2016) -
Sentinel node mapping in endometrial cancer
por: Bogani, Giorgio, et al.
Publicado: (2019)