Cargando…
EOGNET: A Novel Deep Learning Model for Sleep Stage Classification Based on Single-Channel EOG Signal
In recent years, automatic sleep staging methods have achieved competitive performance using electroencephalography (EEG) signals. However, the acquisition of EEG signals is cumbersome and inconvenient. Therefore, we propose a novel sleep staging approach using electrooculogram (EOG) signals, which...
Autores principales: | Fan, Jiahao, Sun, Chenglu, Long, Meng, Chen, Chen, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8311494/ https://www.ncbi.nlm.nih.gov/pubmed/34321991 http://dx.doi.org/10.3389/fnins.2021.573194 |
Ejemplares similares
-
Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
por: Bresch, Erik, et al.
Publicado: (2018) -
EOG Signal Classification with Wavelet and Supervised Learning Algorithms KNN, SVM and DT
por: Hernández Pérez, Sandy Nohemy, et al.
Publicado: (2023) -
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
por: ElMoaqet, Hisham, et al.
Publicado: (2022) -
Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography
por: Fu, Mingyu, et al.
Publicado: (2021) -
A Hybrid BCI Based on SSVEP and EOG for Robotic Arm Control
por: Zhu, Yuanlu, et al.
Publicado: (2020)