Cargando…
Time Series Analysis and Forecasting of the Hand-Foot-Mouth Disease Morbidity in China Using An Advanced Exponential Smoothing State Space TBATS Model
OBJECTIVE: The high morbidity, complex seasonality, and recurring risk of hand-foot-and-mouth disease (HFMD) exert a major burden in China. Forecasting its epidemic trends is greatly instrumental in informing vaccine and targeted interventions. This study sets out to investigate the usefulness of an...
Autores principales: | Yu, Chongchong, Xu, Chunjie, Li, Yuhong, Yao, Sanqiao, Bai, Yichun, Li, Jizhen, Wang, Lei, Wu, Weidong, Wang, Yongbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312251/ https://www.ncbi.nlm.nih.gov/pubmed/34321897 http://dx.doi.org/10.2147/IDR.S304652 |
Ejemplares similares
-
Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China
por: Li, Jizhen, et al.
Publicado: (2021) -
Forecasting with exponential smoothing: the state space approach
por: Hyndman, Rob J, et al.
Publicado: (2008) -
Forecasting the epidemiological trends of COVID-19 prevalence and mortality using the advanced α-Sutte Indicator
por: Wang, Yongbin, et al.
Publicado: (2020) -
Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy
por: Perone, Gaetano
Publicado: (2021) -
An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China
por: Wang, Yongbin, et al.
Publicado: (2020)