Cargando…
Editorial: ML and AI Safety, Effectiveness and Explainability in Healthcare
Autores principales: | Benrimoh, David, Israel, Sonia, Fratila, Robert, Armstrong, Caitrin, Perlman, Kelly, Rosenfeld, Ariel, Kapelner, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312342/ https://www.ncbi.nlm.nih.gov/pubmed/34322667 http://dx.doi.org/10.3389/fdata.2021.727856 |
Ejemplares similares
-
Editorial: Bayesian Inference and AI
por: Tang, Niansheng, et al.
Publicado: (2022) -
Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach
por: Kolyshkina, Inna, et al.
Publicado: (2021) -
Editorial: AI-Enabled Data Science for COVID-19
por: Yan, Da, et al.
Publicado: (2021) -
Editorial: Ethical challenges in AI-enhanced military operations
por: Helkala, Kirsi Marjaana, et al.
Publicado: (2023) -
Editorial: Women in AI medicine and public health 2022
por: Chang, Lin-Ching, et al.
Publicado: (2023)