Cargando…

Identifying Chemical Reactions and Their Associated Attributes in Patents

Chemical patents are an essential source of information about novel chemicals and chemical reactions. However, with the increasing volume of such patents, mining information about these chemicals and chemical reactions has become a time-intensive and laborious endeavor. In this study, we present a s...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahendran, Darshini, Gurdin, Gabrielle, Lewinski, Nastassja, Tang, Christina, McInnes, Bridget T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312343/
https://www.ncbi.nlm.nih.gov/pubmed/34322654
http://dx.doi.org/10.3389/frma.2021.688353
Descripción
Sumario:Chemical patents are an essential source of information about novel chemicals and chemical reactions. However, with the increasing volume of such patents, mining information about these chemicals and chemical reactions has become a time-intensive and laborious endeavor. In this study, we present a system to extract chemical reaction events from patents automatically. Our approach consists of two steps: 1) named entity recognition (NER)—the automatic identification of chemical reaction parameters from the corresponding text, and 2) event extraction (EE)—the automatic classifying and linking of entities based on their relationships to each other. For our NER system, we evaluate bidirectional long short-term memory (BiLSTM)-based and bidirectional encoder representations from transformer (BERT)-based methods. For our EE system, we evaluate BERT-based, convolutional neural network (CNN)-based, and rule-based methods. We evaluate our NER and EE components independently and as an end-to-end system, reporting the precision, recall, and F (1) score. Our results show that the BiLSTM-based method performed best at identifying the entities, and the CNN-based method performed best at extracting events.