Cargando…

A high-content platform for physiological profiling and unbiased classification of individual neurons

High-throughput physiological assays lose single-cell resolution, precluding subtype-specific analyses of activation mechanism and drug effects. We demonstrate APPOINT (automated physiological phenotyping of individual neuronal types), a physiological assay platform combining calcium imaging, roboti...

Descripción completa

Detalles Bibliográficos
Autores principales: DuBreuil, Daniel M., Chiang, Brenda M., Zhu, Kevin, Lai, Xiaofan, Flynn, Patrick, Sapir, Yechiam, Wainger, Brian J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312640/
https://www.ncbi.nlm.nih.gov/pubmed/34318289
http://dx.doi.org/10.1016/j.crmeth.2021.100004
_version_ 1783729181723459584
author DuBreuil, Daniel M.
Chiang, Brenda M.
Zhu, Kevin
Lai, Xiaofan
Flynn, Patrick
Sapir, Yechiam
Wainger, Brian J.
author_facet DuBreuil, Daniel M.
Chiang, Brenda M.
Zhu, Kevin
Lai, Xiaofan
Flynn, Patrick
Sapir, Yechiam
Wainger, Brian J.
author_sort DuBreuil, Daniel M.
collection PubMed
description High-throughput physiological assays lose single-cell resolution, precluding subtype-specific analyses of activation mechanism and drug effects. We demonstrate APPOINT (automated physiological phenotyping of individual neuronal types), a physiological assay platform combining calcium imaging, robotic liquid handling, and automated analysis to generate physiological activation profiles of single neurons at large scale. Using unbiased techniques, we quantify responses to sequential stimuli, enabling subgroup identification by physiology and probing of distinct mechanisms of neuronal activation within subgroups. Using APPOINT, we quantify primary sensory neuron activation by metabotropic receptor agonists and identify potential contributors to pain signaling. We expand the role of neuroimmune interactions by showing that human serum directly activates sensory neurons, elucidating a new potential pain mechanism. Finally, we apply APPOINT to develop a high-throughput, all-optical approach for quantification of activation threshold and pharmacologically validate contributions of ion channel families to optical activation.
format Online
Article
Text
id pubmed-8312640
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83126402021-07-26 A high-content platform for physiological profiling and unbiased classification of individual neurons DuBreuil, Daniel M. Chiang, Brenda M. Zhu, Kevin Lai, Xiaofan Flynn, Patrick Sapir, Yechiam Wainger, Brian J. Cell Rep Methods Article High-throughput physiological assays lose single-cell resolution, precluding subtype-specific analyses of activation mechanism and drug effects. We demonstrate APPOINT (automated physiological phenotyping of individual neuronal types), a physiological assay platform combining calcium imaging, robotic liquid handling, and automated analysis to generate physiological activation profiles of single neurons at large scale. Using unbiased techniques, we quantify responses to sequential stimuli, enabling subgroup identification by physiology and probing of distinct mechanisms of neuronal activation within subgroups. Using APPOINT, we quantify primary sensory neuron activation by metabotropic receptor agonists and identify potential contributors to pain signaling. We expand the role of neuroimmune interactions by showing that human serum directly activates sensory neurons, elucidating a new potential pain mechanism. Finally, we apply APPOINT to develop a high-throughput, all-optical approach for quantification of activation threshold and pharmacologically validate contributions of ion channel families to optical activation. Elsevier 2021-04-02 /pmc/articles/PMC8312640/ /pubmed/34318289 http://dx.doi.org/10.1016/j.crmeth.2021.100004 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
DuBreuil, Daniel M.
Chiang, Brenda M.
Zhu, Kevin
Lai, Xiaofan
Flynn, Patrick
Sapir, Yechiam
Wainger, Brian J.
A high-content platform for physiological profiling and unbiased classification of individual neurons
title A high-content platform for physiological profiling and unbiased classification of individual neurons
title_full A high-content platform for physiological profiling and unbiased classification of individual neurons
title_fullStr A high-content platform for physiological profiling and unbiased classification of individual neurons
title_full_unstemmed A high-content platform for physiological profiling and unbiased classification of individual neurons
title_short A high-content platform for physiological profiling and unbiased classification of individual neurons
title_sort high-content platform for physiological profiling and unbiased classification of individual neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312640/
https://www.ncbi.nlm.nih.gov/pubmed/34318289
http://dx.doi.org/10.1016/j.crmeth.2021.100004
work_keys_str_mv AT dubreuildanielm ahighcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT chiangbrendam ahighcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT zhukevin ahighcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT laixiaofan ahighcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT flynnpatrick ahighcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT sapiryechiam ahighcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT waingerbrianj ahighcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT dubreuildanielm highcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT chiangbrendam highcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT zhukevin highcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT laixiaofan highcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT flynnpatrick highcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT sapiryechiam highcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons
AT waingerbrianj highcontentplatformforphysiologicalprofilingandunbiasedclassificationofindividualneurons