Cargando…
Spike frequency adaptation supports network computations on temporally dispersed information
For solving tasks such as recognizing a song, answering a question, or inverting a sequence of symbols, cortical microcircuits need to integrate and manipulate information that was dispersed over time during the preceding seconds. Creating biologically realistic models for the underlying computation...
Autores principales: | Salaj, Darjan, Subramoney, Anand, Kraisnikovic, Ceca, Bellec, Guillaume, Legenstein, Robert, Maass, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313230/ https://www.ncbi.nlm.nih.gov/pubmed/34310281 http://dx.doi.org/10.7554/eLife.65459 |
Ejemplares similares
-
A solution to the learning dilemma for recurrent networks of spiking neurons
por: Bellec, Guillaume, et al.
Publicado: (2020) -
Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment
por: Legenstein, Robert, et al.
Publicado: (2014) -
A Learning Theory for Reward-Modulated Spike-Timing-Dependent
Plasticity with Application to Biofeedback
por: Legenstein, Robert, et al.
Publicado: (2008) -
STDP Forms Associations between Memory Traces in Networks of Spiking Neurons
por: Pokorny, Christoph, et al.
Publicado: (2020) -
Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition
por: Bill, Johannes, et al.
Publicado: (2015)