Cargando…

Chimeric Phi29 DNA polymerase with helix–hairpin–helix motifs shows enhanced salt tolerance and replication performance

Phi29 DNA polymerase (Phi29 Pol) has been successfully applied in DNA nanoball‐based sequencing, real‐time DNA sequencing from single polymerase molecules and nanopore sequencing employing the sequencing by synthesis (SBS) method. Among these, polymerase‐assisted nanopore sequencing technology analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yaping, He, Yun, Chen, Liyi, Liu, Xing, Ivanov, Igor, Yang, Xuerui, Tian, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313265/
https://www.ncbi.nlm.nih.gov/pubmed/34009743
http://dx.doi.org/10.1111/1751-7915.13830
Descripción
Sumario:Phi29 DNA polymerase (Phi29 Pol) has been successfully applied in DNA nanoball‐based sequencing, real‐time DNA sequencing from single polymerase molecules and nanopore sequencing employing the sequencing by synthesis (SBS) method. Among these, polymerase‐assisted nanopore sequencing technology analyses nucleotide sequences as a function of changes in electrical current. This ionic, current‐based sequencing technology requires polymerases to perform replication at high salt concentrations, for example 0.3 M KCl. Nonetheless, the salt tolerance of wild‐type Phi29 Pol is relatively low. Here, we fused helix–hairpin–helix (HhH)(2) domains E‐L (eight repeats in total) of topoisomerase V (Topo V) from the hyperthermophile Methanopyrus kandleri to the Phi29 Pol COOH terminus, designated Phi29EL DNA polymerase (Phi29EL Pol). Domain fusion increased the overall enzyme replication efficiency by fourfold. Phi29EL Pol catalysed rolling circle replication in a broader range of salt concentrations than did Phi29 Pol, extending the KCl concentration range for activity up to 0.3 M. In addition, the mutation of Glu(375) to Ser or Gln increased Phi29EL Pol activity in the presence of KCl. In this work, we produced a salt‐tolerant Phi29 Pol derivative by means of (HhH)(2) domain insertion. The multiple advantages of this insertion make it a good substitute for Phi29 Pol, especially for use in nanopore sequencing or other circumstances that require high salt concentrations.