Cargando…

The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440

Pseudomonas putida (P. putida) is a microorganism of interest for various industrial processes, yet its strictly aerobic nature limits application. Despite previous attempts to adapt P. putida to anoxic conditions via genetic engineering or the use of a bioelectrochemical system (BES), the problem o...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Anh Vu, Lai, Bin, Adrian, Lorenz, Krömer, Jens O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313287/
https://www.ncbi.nlm.nih.gov/pubmed/34115443
http://dx.doi.org/10.1111/1751-7915.13862
_version_ 1783729313620688896
author Nguyen, Anh Vu
Lai, Bin
Adrian, Lorenz
Krömer, Jens O.
author_facet Nguyen, Anh Vu
Lai, Bin
Adrian, Lorenz
Krömer, Jens O.
author_sort Nguyen, Anh Vu
collection PubMed
description Pseudomonas putida (P. putida) is a microorganism of interest for various industrial processes, yet its strictly aerobic nature limits application. Despite previous attempts to adapt P. putida to anoxic conditions via genetic engineering or the use of a bioelectrochemical system (BES), the problem of energy shortage and internal redox imbalance persists. In this work, we aimed to provide the cytoplasmic metabolism with different monosaccharides, other than glucose, and explored the physiological response in P. putida KT2440 during bioelectrochemical cultivation. The periplasmic oxidation cascade was found to be able to oxidize a wide range of aldoses to their corresponding (keto‐)aldonates. Unexpectedly, isomerization of the ketose fructose to mannose also enabled oxidation by glucose dehydrogenase, a new pathway uncovered for fructose metabolism in P. putida KT2440 in BES. Besides the isomerization, the remainder of fructose was imported into the cytoplasm and metabolized. This resulted in a higher NADPH/NADP(+) ratio, compared to glucose. Comparative proteomics further revealed the upregulation of proteins in the lower central carbon metabolism during the experiment. These findings highlight that the choice of a substrate in BES can target cytosolic and periplasmic oxidation pathways, and that electrode‐driven redox balancing can drive these pathways in P. putida under anaerobic conditions.
format Online
Article
Text
id pubmed-8313287
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83132872021-07-30 The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440 Nguyen, Anh Vu Lai, Bin Adrian, Lorenz Krömer, Jens O. Microb Biotechnol Research Articles Pseudomonas putida (P. putida) is a microorganism of interest for various industrial processes, yet its strictly aerobic nature limits application. Despite previous attempts to adapt P. putida to anoxic conditions via genetic engineering or the use of a bioelectrochemical system (BES), the problem of energy shortage and internal redox imbalance persists. In this work, we aimed to provide the cytoplasmic metabolism with different monosaccharides, other than glucose, and explored the physiological response in P. putida KT2440 during bioelectrochemical cultivation. The periplasmic oxidation cascade was found to be able to oxidize a wide range of aldoses to their corresponding (keto‐)aldonates. Unexpectedly, isomerization of the ketose fructose to mannose also enabled oxidation by glucose dehydrogenase, a new pathway uncovered for fructose metabolism in P. putida KT2440 in BES. Besides the isomerization, the remainder of fructose was imported into the cytoplasm and metabolized. This resulted in a higher NADPH/NADP(+) ratio, compared to glucose. Comparative proteomics further revealed the upregulation of proteins in the lower central carbon metabolism during the experiment. These findings highlight that the choice of a substrate in BES can target cytosolic and periplasmic oxidation pathways, and that electrode‐driven redox balancing can drive these pathways in P. putida under anaerobic conditions. John Wiley and Sons Inc. 2021-06-11 /pmc/articles/PMC8313287/ /pubmed/34115443 http://dx.doi.org/10.1111/1751-7915.13862 Text en © 2021 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Nguyen, Anh Vu
Lai, Bin
Adrian, Lorenz
Krömer, Jens O.
The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440
title The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440
title_full The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440
title_fullStr The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440
title_full_unstemmed The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440
title_short The anoxic electrode‐driven fructose catabolism of Pseudomonas putida KT2440
title_sort anoxic electrode‐driven fructose catabolism of pseudomonas putida kt2440
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313287/
https://www.ncbi.nlm.nih.gov/pubmed/34115443
http://dx.doi.org/10.1111/1751-7915.13862
work_keys_str_mv AT nguyenanhvu theanoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440
AT laibin theanoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440
AT adrianlorenz theanoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440
AT kromerjenso theanoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440
AT nguyenanhvu anoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440
AT laibin anoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440
AT adrianlorenz anoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440
AT kromerjenso anoxicelectrodedrivenfructosecatabolismofpseudomonasputidakt2440