Cargando…
Filtering High-Dimensional Methylation Marks With Extremely Small Sample Size: An Application to Gastric Cancer Data
DNA methylations in critical regions are highly involved in cancer pathogenesis and drug response. However, to identify causal methylations out of a large number of potential polymorphic DNA methylation sites is challenging. This high-dimensional data brings two obstacles: first, many established st...
Autores principales: | Chen, Xin, Zhang, Qingrun, Chekouo, Thierry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313381/ https://www.ncbi.nlm.nih.gov/pubmed/34322159 http://dx.doi.org/10.3389/fgene.2021.705708 |
Ejemplares similares
-
Multifactor Dimensionality Reduction as a Filter-Based Approach for Genome Wide Association Studies
por: Oki, Noffisat O., et al.
Publicado: (2011) -
Editorial: Statistical methods for genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) and their applications
por: Shao, Mengting, et al.
Publicado: (2023) -
Analyses of a Panel of Transcripts Identified From a Small Sample Size and Construction of RNA Networks in Hepatocellular Carcinoma
por: Sheng, Zhiyong, et al.
Publicado: (2019) -
Accurate recapture identification for genetic mark–recapture studies with error-tolerant likelihood-based match calling and sample clustering
por: Sethi, Suresh A., et al.
Publicado: (2016) -
A multi-threaded approach to genotype pattern mining for detecting digenic disease genes
por: Zhang, Qingrun, et al.
Publicado: (2023)