Cargando…
Automatic Detection of Covid-19 with Bidirectional LSTM Network Using Deep Features Extracted from Chest X-ray Images
Coronavirus disease, which comes up in China at the end of 2019 and showed different symptoms in people infected, affected millions of people. Computer-aided expert systems are needed due to the inadequacy of the reverse transcription-polymerase chain reaction kit, which is widely used in the diagno...
Autores principales: | Akyol, Kemal, Şen, Baha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313418/ https://www.ncbi.nlm.nih.gov/pubmed/34313974 http://dx.doi.org/10.1007/s12539-021-00463-2 |
Ejemplares similares
-
Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques
por: Akyol, Kemal, et al.
Publicado: (2016) -
Automatic detection of pneumonia in chest X-ray images using textural features
por: Ortiz-Toro, César, et al.
Publicado: (2022) -
Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network
por: Kantipudi, MVV Prasad, et al.
Publicado: (2021) -
Fusion-Extracted Features by Deep Networks for Improved COVID-19 Classification with Chest X-ray Radiography
por: Lin, Kuo-Hsuan, et al.
Publicado: (2023) -
Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network
por: Kim, Minki, et al.
Publicado: (2021)