Cargando…

Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor

Selective breaking of degenerate energy levels is a well-known tool for coherent manipulation of spin states. Though most simply achieved with magnetic fields, polarization-sensitive optical methods provide high-speed alternatives. Exploiting the optical selection rules of transition metal dichalcog...

Descripción completa

Detalles Bibliográficos
Autores principales: LaMountain, Trevor, Nelson, Jovan, Lenferink, Erik J., Amsterdam, Samuel H., Murthy, Akshay A., Zeng, Hongfei, Marks, Tobin J., Dravid, Vinayak P., Hersam, Mark C., Stern, Nathaniel P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313563/
https://www.ncbi.nlm.nih.gov/pubmed/34312389
http://dx.doi.org/10.1038/s41467-021-24764-8
Descripción
Sumario:Selective breaking of degenerate energy levels is a well-known tool for coherent manipulation of spin states. Though most simply achieved with magnetic fields, polarization-sensitive optical methods provide high-speed alternatives. Exploiting the optical selection rules of transition metal dichalcogenide monolayers, the optical Stark effect allows for ultrafast manipulation of valley-coherent excitons. Compared to excitons in these materials, microcavity exciton-polaritons offer a promising alternative for valley manipulation, with longer lifetimes, enhanced valley coherence, and operation across wider temperature ranges. Here, we show valley-selective control of polariton energies in WS(2) using the optical Stark effect, extending coherent valley manipulation to the hybrid light-matter regime. Ultrafast pump-probe measurements reveal polariton spectra with strong polarization contrast originating from valley-selective energy shifts. This demonstration of valley degeneracy breaking at picosecond timescales establishes a method for coherent control of valley phenomena in exciton-polaritons.