Cargando…

Altered effective connectivity within an oculomotor control network in individuals with schizophrenia

Rapid inhibition or modification of actions is a crucial cognitive ability, which is impaired in persons with schizophrenia (SZP). Primate neurophysiology studies have identified a network of brain regions that subserves control over gaze. Here, we examine effective connectivity within this oculomot...

Descripción completa

Detalles Bibliográficos
Autores principales: Lehet, Matthew, Tso, Ivy F., Neggers, Sebastiaan F.W., Thompson, Ilse A., Yao, Beier, Kahn, René S., Thakkar, Katharine N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313596/
https://www.ncbi.nlm.nih.gov/pubmed/34284336
http://dx.doi.org/10.1016/j.nicl.2021.102764
Descripción
Sumario:Rapid inhibition or modification of actions is a crucial cognitive ability, which is impaired in persons with schizophrenia (SZP). Primate neurophysiology studies have identified a network of brain regions that subserves control over gaze. Here, we examine effective connectivity within this oculomotor control network in SZP and healthy controls (HC). During fMRI, participants performed a stop-signal task variant in which they were instructed to saccade to a visual target (no-step trials) unless a second target appeared (redirect trials); on redirect trials, participants were instructed to inhibit the planned saccade and redirect to the new target. We compared functional responses on redirect trials to no-step trials and used dynamic causal modelling (DCM) to examine group differences in network effective connectivity. Behaviorally, SZP were less efficient at inhibiting, which was related to their employment status. Compared to HC, they showed a smaller difference in activity between redirect trials and no-step trials in frontal eye fields (FEF), supplementary eye fields (SEF), inferior frontal cortex (IFC), thalamus, and caudate. DCM analyses revealed widespread group differences in effective connectivity across the task, including different patterns of self-inhibition in many nodes in SZP. Group differences in how effective connectivity was modulated on redirect trials revealed differences between the FEF and SEF, between the SEF and IFC, between the superior colliculus and the thalamus, and self-inhibition within the FEF and caudate. These results provide insight into the neural mechanisms of inefficient inhibitory control in individuals with schizophrenia.