Cargando…
Decoding EEG Brain Activity for Multi-Modal Natural Language Processing
Until recently, human behavioral data from reading has mainly been of interest to researchers to understand human cognition. However, these human language processing signals can also be beneficial in machine learning-based natural language processing tasks. Using EEG brain activity for this purpose...
Autores principales: | Hollenstein, Nora, Renggli, Cedric, Glaus, Benjamin, Barrett, Maria, Troendle, Marius, Langer, Nicolas, Zhang, Ce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314009/ https://www.ncbi.nlm.nih.gov/pubmed/34326723 http://dx.doi.org/10.3389/fnhum.2021.659410 |
Ejemplares similares
-
ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading
por: Hollenstein, Nora, et al.
Publicado: (2018) -
Including Measures of High Gamma Power Can Improve the Decoding of Natural Speech From EEG
por: Synigal, Shyanthony R., et al.
Publicado: (2020) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020) -
Decoding Intracranial EEG With Machine Learning: A Systematic Review
por: Mirchi, Nykan, et al.
Publicado: (2022) -
A State-of-the-Art Review of EEG-Based Imagined Speech Decoding
por: Lopez-Bernal, Diego, et al.
Publicado: (2022)