Cargando…

Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications

[Image: see text] Macroscopic materials with nanoscopic properties have recently been synthesized by self-assembling defined nanoparticles to form self-supported networks, so-called aerogels. Motivated by the promising properties of this class of materials, the search for versatile routes toward the...

Descripción completa

Detalles Bibliográficos
Autores principales: Altenschmidt, Laura, Sánchez-Paradinas, Sara, Lübkemann, Franziska, Zámbó, Dániel, Abdelmonem, Abuelmagd M., Bradtmüller, Henrik, Masood, Atif, Morales, Irene, de la Presa, Patricia, Knebel, Alexander, García-Tuñón, Miguel Angel García, Pelaz, Beatriz, Hindricks, Karen D. J., Behrens, Peter, Parak, Wolfgang J., Bigall, Nadja C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314273/
https://www.ncbi.nlm.nih.gov/pubmed/34327308
http://dx.doi.org/10.1021/acsanm.1c00636
_version_ 1783729512591130624
author Altenschmidt, Laura
Sánchez-Paradinas, Sara
Lübkemann, Franziska
Zámbó, Dániel
Abdelmonem, Abuelmagd M.
Bradtmüller, Henrik
Masood, Atif
Morales, Irene
de la Presa, Patricia
Knebel, Alexander
García-Tuñón, Miguel Angel García
Pelaz, Beatriz
Hindricks, Karen D. J.
Behrens, Peter
Parak, Wolfgang J.
Bigall, Nadja C.
author_facet Altenschmidt, Laura
Sánchez-Paradinas, Sara
Lübkemann, Franziska
Zámbó, Dániel
Abdelmonem, Abuelmagd M.
Bradtmüller, Henrik
Masood, Atif
Morales, Irene
de la Presa, Patricia
Knebel, Alexander
García-Tuñón, Miguel Angel García
Pelaz, Beatriz
Hindricks, Karen D. J.
Behrens, Peter
Parak, Wolfgang J.
Bigall, Nadja C.
author_sort Altenschmidt, Laura
collection PubMed
description [Image: see text] Macroscopic materials with nanoscopic properties have recently been synthesized by self-assembling defined nanoparticles to form self-supported networks, so-called aerogels. Motivated by the promising properties of this class of materials, the search for versatile routes toward the controlled assembly of presynthesized nanoparticles into such ultralight macroscopic materials has become a great interest. Overcoating procedures of colloidal nanoparticles with polymers offer versatile means to produce aerogels from nanoparticles, regardless of their size, shape, or properties while retaining their original characteristics. Herein, we report on the surface modification and assembly of various building blocks: photoluminescent nanorods, magnetic nanospheres, and plasmonic nanocubes with particle sizes between 5 and 40 nm. The polymer employed for the coating was poly(isobutylene-alt-maleic anhydride) modified with 1-dodecylamine side chains. The amphiphilic character of the polymer facilitates the stability of the nanocrystals in aqueous media. Hydrogels are prepared via triggering the colloidally stable solutions, with aqueous cations acting as linkers between the functional groups of the polymer shell. Upon supercritical drying, the hydrogels are successfully converted into macroscopic aerogels with highly porous, open structure. Due to the noninvasive preparation method, the nanoscopic properties of the building blocks are retained in the monolithic aerogels, leading to the powerful transfer of these properties to the macroscale. The open pore system, the universality of the polymer-coating strategy, and the large accessibility of the network make these gel structures promising biosensing platforms. Functionalizing the polymer shell with biomolecules opens up the possibility to utilize the nanoscopic properties of the building blocks in fluorescent probing, magnetoresistive sensing, and plasmonic-driven thermal sensing.
format Online
Article
Text
id pubmed-8314273
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-83142732021-07-27 Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications Altenschmidt, Laura Sánchez-Paradinas, Sara Lübkemann, Franziska Zámbó, Dániel Abdelmonem, Abuelmagd M. Bradtmüller, Henrik Masood, Atif Morales, Irene de la Presa, Patricia Knebel, Alexander García-Tuñón, Miguel Angel García Pelaz, Beatriz Hindricks, Karen D. J. Behrens, Peter Parak, Wolfgang J. Bigall, Nadja C. ACS Appl Nano Mater [Image: see text] Macroscopic materials with nanoscopic properties have recently been synthesized by self-assembling defined nanoparticles to form self-supported networks, so-called aerogels. Motivated by the promising properties of this class of materials, the search for versatile routes toward the controlled assembly of presynthesized nanoparticles into such ultralight macroscopic materials has become a great interest. Overcoating procedures of colloidal nanoparticles with polymers offer versatile means to produce aerogels from nanoparticles, regardless of their size, shape, or properties while retaining their original characteristics. Herein, we report on the surface modification and assembly of various building blocks: photoluminescent nanorods, magnetic nanospheres, and plasmonic nanocubes with particle sizes between 5 and 40 nm. The polymer employed for the coating was poly(isobutylene-alt-maleic anhydride) modified with 1-dodecylamine side chains. The amphiphilic character of the polymer facilitates the stability of the nanocrystals in aqueous media. Hydrogels are prepared via triggering the colloidally stable solutions, with aqueous cations acting as linkers between the functional groups of the polymer shell. Upon supercritical drying, the hydrogels are successfully converted into macroscopic aerogels with highly porous, open structure. Due to the noninvasive preparation method, the nanoscopic properties of the building blocks are retained in the monolithic aerogels, leading to the powerful transfer of these properties to the macroscale. The open pore system, the universality of the polymer-coating strategy, and the large accessibility of the network make these gel structures promising biosensing platforms. Functionalizing the polymer shell with biomolecules opens up the possibility to utilize the nanoscopic properties of the building blocks in fluorescent probing, magnetoresistive sensing, and plasmonic-driven thermal sensing. American Chemical Society 2021-07-08 2021-07-23 /pmc/articles/PMC8314273/ /pubmed/34327308 http://dx.doi.org/10.1021/acsanm.1c00636 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Altenschmidt, Laura
Sánchez-Paradinas, Sara
Lübkemann, Franziska
Zámbó, Dániel
Abdelmonem, Abuelmagd M.
Bradtmüller, Henrik
Masood, Atif
Morales, Irene
de la Presa, Patricia
Knebel, Alexander
García-Tuñón, Miguel Angel García
Pelaz, Beatriz
Hindricks, Karen D. J.
Behrens, Peter
Parak, Wolfgang J.
Bigall, Nadja C.
Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications
title Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications
title_full Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications
title_fullStr Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications
title_full_unstemmed Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications
title_short Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications
title_sort aerogelation of polymer-coated photoluminescent, plasmonic, and magnetic nanoparticles for biosensing applications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314273/
https://www.ncbi.nlm.nih.gov/pubmed/34327308
http://dx.doi.org/10.1021/acsanm.1c00636
work_keys_str_mv AT altenschmidtlaura aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT sanchezparadinassara aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT lubkemannfranziska aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT zambodaniel aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT abdelmonemabuelmagdm aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT bradtmullerhenrik aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT masoodatif aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT moralesirene aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT delapresapatricia aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT knebelalexander aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT garciatunonmiguelangelgarcia aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT pelazbeatriz aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT hindrickskarendj aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT behrenspeter aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT parakwolfgangj aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications
AT bigallnadjac aerogelationofpolymercoatedphotoluminescentplasmonicandmagneticnanoparticlesforbiosensingapplications