Cargando…
A deep-learning-based framework for severity assessment of COVID-19 with CT images
Millions of positive COVID-19 patients are suffering from the pandemic around the world, a critical step in the management and treatment is severity assessment, which is quite challenging with the limited medical resources. Currently, several artificial intelligence systems have been developed for t...
Autores principales: | Li, Zhidan, Zhao, Shixuan, Chen, Yang, Luo, Fuya, Kang, Zhiqing, Cai, Shengping, Zhao, Wei, Liu, Jun, Zhao, Di, Li, Yongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314790/ https://www.ncbi.nlm.nih.gov/pubmed/34334965 http://dx.doi.org/10.1016/j.eswa.2021.115616 |
Ejemplares similares
-
Dynamic 3D radiomics analysis using artificial intelligence to assess the stage of COVID-19 on CT images
por: Cai, Shengping, et al.
Publicado: (2022) -
SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images
por: Zhao, Shixuan, et al.
Publicado: (2021) -
Deep learning for COVID-19 detection based on CT images
por: Zhao, Wentao, et al.
Publicado: (2021) -
ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation
por: Jalali, Yeganeh, et al.
Publicado: (2021) -
Predicting Malignancy and Invasiveness of Pulmonary Subsolid Nodules on CT Images Using Deep Learning
por: Shen, Tianle, et al.
Publicado: (2021)