Cargando…
Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs
Rationale: Acute liver failure (ALF) causes severe liver injury and a systemic inflammatory response, leading to multiorgan failure with a high short-term mortality. Bioartificial liver (BAL) therapy is a promising approach that is hampered by the lack of appropriate bioreactors and carriers to reta...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315066/ https://www.ncbi.nlm.nih.gov/pubmed/34335954 http://dx.doi.org/10.7150/thno.58515 |
_version_ | 1783729663113166848 |
---|---|
author | Weng, Jun Han, Xu Zeng, Fanhong Zhang, Yue Feng, Lei Cai, Lei Liang, Kangyan Liu, Shusong Li, Shao Fu, Gongbo Zeng, Min Gao, Yi |
author_facet | Weng, Jun Han, Xu Zeng, Fanhong Zhang, Yue Feng, Lei Cai, Lei Liang, Kangyan Liu, Shusong Li, Shao Fu, Gongbo Zeng, Min Gao, Yi |
author_sort | Weng, Jun |
collection | PubMed |
description | Rationale: Acute liver failure (ALF) causes severe liver injury and a systemic inflammatory response, leading to multiorgan failure with a high short-term mortality. Bioartificial liver (BAL) therapy is a promising approach that is hampered by the lack of appropriate bioreactors and carriers to retain hepatic cell function and poor understanding of BAL treatment mechanisms in ALF and extrahepatic organ injury. Recently, we used a fiber scaffold bioreactor (FSB) for the high-density, three-dimensional (3D) culture of primary porcine hepatocytes (PPHs) combined with an absorption component to construct a BAL and verified its function in a D-galactosamine (D-gal)-induced ALF porcine model to evaluate its protective effects on the liver and extrahepatic organs. Methods: Male pigs were randomized into standard/supportive therapy (ST), ST+no-cell BAL (ST+Sham BAL) and ST+BAL groups and received treatment 48 h after receiving a D-gal injection. Changes in blood chemistry and clinical symptoms were monitored for 120 h. Tissues and plasma were collected for analysis by pathological examination, immunoblotting, quantitative PCR and immunoassays. Results: PPHs cultured in the FSB obtained sufficient aeration and nutrition for high-density, 3D culture and maintained superior viability and functionality (biosynthesis and detoxification) compared with those cultured in flasks. All the animals developed ALF, acute kidney injury (AKI) and hepatic encephalopathy (HE) 48 h after D-gal infusion and received corresponding therapies. Animals in the BAL group showed markedly improved survival (4/5; 80%) compared with those in the ST+Sham BAL (0/5; p < 0.001) and ST (0/5; p < 0.001) groups. The levels of blood ammonia and biochemical and inflammatory indices were alleviated after BAL treatment. Increased liver regeneration and attenuations in the occurrence and severity of ALF, AKI and HE were observed in the ST+BAL group compared with the ST (p = 0.0009; p = 0.038) and ST+Sham BAL (p = 0.011; p = 0.031) groups. Gut leakage, the plasma endotoxin level, bacterial translocation, and peripheral and neuroinflammation were alleviated in the ST+BAL group compared with those in the other groups. Conclusions: BAL treatment enhanced liver regeneration and alleviated the systemic inflammatory response and extrahepatic organ injury to prolong survival in the ALF model and has potential as a therapeutic approach for ALF patients. |
format | Online Article Text |
id | pubmed-8315066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-83150662021-07-30 Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs Weng, Jun Han, Xu Zeng, Fanhong Zhang, Yue Feng, Lei Cai, Lei Liang, Kangyan Liu, Shusong Li, Shao Fu, Gongbo Zeng, Min Gao, Yi Theranostics Research Paper Rationale: Acute liver failure (ALF) causes severe liver injury and a systemic inflammatory response, leading to multiorgan failure with a high short-term mortality. Bioartificial liver (BAL) therapy is a promising approach that is hampered by the lack of appropriate bioreactors and carriers to retain hepatic cell function and poor understanding of BAL treatment mechanisms in ALF and extrahepatic organ injury. Recently, we used a fiber scaffold bioreactor (FSB) for the high-density, three-dimensional (3D) culture of primary porcine hepatocytes (PPHs) combined with an absorption component to construct a BAL and verified its function in a D-galactosamine (D-gal)-induced ALF porcine model to evaluate its protective effects on the liver and extrahepatic organs. Methods: Male pigs were randomized into standard/supportive therapy (ST), ST+no-cell BAL (ST+Sham BAL) and ST+BAL groups and received treatment 48 h after receiving a D-gal injection. Changes in blood chemistry and clinical symptoms were monitored for 120 h. Tissues and plasma were collected for analysis by pathological examination, immunoblotting, quantitative PCR and immunoassays. Results: PPHs cultured in the FSB obtained sufficient aeration and nutrition for high-density, 3D culture and maintained superior viability and functionality (biosynthesis and detoxification) compared with those cultured in flasks. All the animals developed ALF, acute kidney injury (AKI) and hepatic encephalopathy (HE) 48 h after D-gal infusion and received corresponding therapies. Animals in the BAL group showed markedly improved survival (4/5; 80%) compared with those in the ST+Sham BAL (0/5; p < 0.001) and ST (0/5; p < 0.001) groups. The levels of blood ammonia and biochemical and inflammatory indices were alleviated after BAL treatment. Increased liver regeneration and attenuations in the occurrence and severity of ALF, AKI and HE were observed in the ST+BAL group compared with the ST (p = 0.0009; p = 0.038) and ST+Sham BAL (p = 0.011; p = 0.031) groups. Gut leakage, the plasma endotoxin level, bacterial translocation, and peripheral and neuroinflammation were alleviated in the ST+BAL group compared with those in the other groups. Conclusions: BAL treatment enhanced liver regeneration and alleviated the systemic inflammatory response and extrahepatic organ injury to prolong survival in the ALF model and has potential as a therapeutic approach for ALF patients. Ivyspring International Publisher 2021-06-11 /pmc/articles/PMC8315066/ /pubmed/34335954 http://dx.doi.org/10.7150/thno.58515 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Weng, Jun Han, Xu Zeng, Fanhong Zhang, Yue Feng, Lei Cai, Lei Liang, Kangyan Liu, Shusong Li, Shao Fu, Gongbo Zeng, Min Gao, Yi Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs |
title | Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs |
title_full | Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs |
title_fullStr | Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs |
title_full_unstemmed | Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs |
title_short | Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs |
title_sort | fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315066/ https://www.ncbi.nlm.nih.gov/pubmed/34335954 http://dx.doi.org/10.7150/thno.58515 |
work_keys_str_mv | AT wengjun fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT hanxu fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT zengfanhong fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT zhangyue fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT fenglei fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT cailei fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT liangkangyan fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT liushusong fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT lishao fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT fugongbo fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT zengmin fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs AT gaoyi fiberscaffoldbioartificiallivertherapyrelievesacuteliverfailureandextrahepaticorganinjuryinpigs |