Cargando…
Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components
Bayesian additive regression tree (BART) is a recent statistical method that combines ensemble learning and nonparametric regression. BART is constructed under a probabilistic framework that also allows for model-based prediction uncertainty quantification. We evaluated the application of BART in pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315111/ https://www.ncbi.nlm.nih.gov/pubmed/34322279 http://dx.doi.org/10.3390/atmos11111233 |
_version_ | 1783729671489191936 |
---|---|
author | Zhang, Tianyu Geng, Guannan Liu, Yang Chang, Howard H. |
author_facet | Zhang, Tianyu Geng, Guannan Liu, Yang Chang, Howard H. |
author_sort | Zhang, Tianyu |
collection | PubMed |
description | Bayesian additive regression tree (BART) is a recent statistical method that combines ensemble learning and nonparametric regression. BART is constructed under a probabilistic framework that also allows for model-based prediction uncertainty quantification. We evaluated the application of BART in predicting daily concentrations of four fine particulate matter (PM(2.5)) components (elemental carbon, organic carbon, nitrate, and sulfate) in California during the period 2005 to 2014. We demonstrate in this paper how BART can be tuned to optimize prediction performance and how to evaluate variable importance. Our BART models included, as predictors, a large suite of land-use variables, meteorological conditions, satellite-derived aerosol optical depth parameters, and simulations from a chemical transport model. In cross-validation experiments, BART demonstrated good out-of-sample prediction performance at monitoring locations (R(2) from 0.62 to 0.73). More importantly, prediction intervals associated with concentration estimates from BART showed good coverage probability at locations with and without monitoring data. In our case study, major PM(2.5) components could be estimated with good accuracy, especially when collocated PM(2.5) total mass observations were available. In conclusion, BART is an attractive approach for modeling ambient air pollution levels, especially for its ability to provide uncertainty in estimates that may be useful for subsequent health impact and health effect analyses. |
format | Online Article Text |
id | pubmed-8315111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-83151112021-07-27 Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components Zhang, Tianyu Geng, Guannan Liu, Yang Chang, Howard H. Atmosphere (Basel) Article Bayesian additive regression tree (BART) is a recent statistical method that combines ensemble learning and nonparametric regression. BART is constructed under a probabilistic framework that also allows for model-based prediction uncertainty quantification. We evaluated the application of BART in predicting daily concentrations of four fine particulate matter (PM(2.5)) components (elemental carbon, organic carbon, nitrate, and sulfate) in California during the period 2005 to 2014. We demonstrate in this paper how BART can be tuned to optimize prediction performance and how to evaluate variable importance. Our BART models included, as predictors, a large suite of land-use variables, meteorological conditions, satellite-derived aerosol optical depth parameters, and simulations from a chemical transport model. In cross-validation experiments, BART demonstrated good out-of-sample prediction performance at monitoring locations (R(2) from 0.62 to 0.73). More importantly, prediction intervals associated with concentration estimates from BART showed good coverage probability at locations with and without monitoring data. In our case study, major PM(2.5) components could be estimated with good accuracy, especially when collocated PM(2.5) total mass observations were available. In conclusion, BART is an attractive approach for modeling ambient air pollution levels, especially for its ability to provide uncertainty in estimates that may be useful for subsequent health impact and health effect analyses. 2020-11-16 2020-11 /pmc/articles/PMC8315111/ /pubmed/34322279 http://dx.doi.org/10.3390/atmos11111233 Text en https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Zhang, Tianyu Geng, Guannan Liu, Yang Chang, Howard H. Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components |
title | Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components |
title_full | Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components |
title_fullStr | Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components |
title_full_unstemmed | Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components |
title_short | Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components |
title_sort | application of bayesian additive regression trees for estimating daily concentrations of pm(2.5) components |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315111/ https://www.ncbi.nlm.nih.gov/pubmed/34322279 http://dx.doi.org/10.3390/atmos11111233 |
work_keys_str_mv | AT zhangtianyu applicationofbayesianadditiveregressiontreesforestimatingdailyconcentrationsofpm25components AT gengguannan applicationofbayesianadditiveregressiontreesforestimatingdailyconcentrationsofpm25components AT liuyang applicationofbayesianadditiveregressiontreesforestimatingdailyconcentrationsofpm25components AT changhowardh applicationofbayesianadditiveregressiontreesforestimatingdailyconcentrationsofpm25components |