Cargando…
Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components
Bayesian additive regression tree (BART) is a recent statistical method that combines ensemble learning and nonparametric regression. BART is constructed under a probabilistic framework that also allows for model-based prediction uncertainty quantification. We evaluated the application of BART in pr...
Autores principales: | Zhang, Tianyu, Geng, Guannan, Liu, Yang, Chang, Howard H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315111/ https://www.ncbi.nlm.nih.gov/pubmed/34322279 http://dx.doi.org/10.3390/atmos11111233 |
Ejemplares similares
-
Tracking Daily Concentrations
of PM(2.5) Chemical
Composition in China since 2000
por: Liu, Shigan, et al.
Publicado: (2022) -
A Bayesian Downscaler Model to Estimate Daily PM(2.5) Levels in the Conterminous US
por: Wang, Yikai, et al.
Publicado: (2018) -
PM(2.5) Concentration Estimation Based on Image Processing Schemes and Simple Linear Regression
por: Liaw, Jiun-Jian, et al.
Publicado: (2020) -
Genome-wide prediction using Bayesian additive regression trees
por: Waldmann, Patrik
Publicado: (2016) -
The concentration-response relation between PM(2.5) and daily deaths.
por: Schwartz, Joel, et al.
Publicado: (2002)