Cargando…
Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets
BACKGROUND: The COVID-19 pandemic has changed public health policies and human and community behaviors through lockdowns and mandates. Governments are rapidly evolving policies to increase hospital capacity and supply personal protective equipment and other equipment to mitigate disease spread in af...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315156/ https://www.ncbi.nlm.nih.gov/pubmed/34156964 http://dx.doi.org/10.2196/28812 |
_version_ | 1783729676525502464 |
---|---|
author | Gupta, Agrayan K Grannis, Shaun J Kasthurirathne, Suranga N |
author_facet | Gupta, Agrayan K Grannis, Shaun J Kasthurirathne, Suranga N |
author_sort | Gupta, Agrayan K |
collection | PubMed |
description | BACKGROUND: The COVID-19 pandemic has changed public health policies and human and community behaviors through lockdowns and mandates. Governments are rapidly evolving policies to increase hospital capacity and supply personal protective equipment and other equipment to mitigate disease spread in affected regions. Current models that predict COVID-19 case counts and spread are complex by nature and offer limited explainability and generalizability. This has highlighted the need for accurate and robust outbreak prediction models that balance model parsimony and performance. OBJECTIVE: We sought to leverage readily accessible data sets extracted from multiple states to train and evaluate a parsimonious predictive model capable of identifying county-level risk of COVID-19 outbreaks on a day-to-day basis. METHODS: Our modeling approach leveraged the following data inputs: COVID-19 case counts per county per day and county populations. We developed an outbreak gold standard across California, Indiana, and Iowa. The model utilized a per capita running 7-day sum of the case counts per county per day and the mean cumulative case count to develop baseline values. The model was trained with data recorded between March 1 and August 31, 2020, and tested on data recorded between September 1 and October 31, 2020. RESULTS: The model reported sensitivities of 81%, 92%, and 90% for California, Indiana, and Iowa, respectively. The precision in each state was above 85% while specificity and accuracy scores were generally >95%. CONCLUSIONS: Our parsimonious model provides a generalizable and simple alternative approach to outbreak prediction. This methodology can be applied to diverse regions to help state officials and hospitals with resource allocation and to guide risk management, community education, and mitigation strategies. |
format | Online Article Text |
id | pubmed-8315156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-83151562021-08-11 Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets Gupta, Agrayan K Grannis, Shaun J Kasthurirathne, Suranga N J Med Internet Res Original Paper BACKGROUND: The COVID-19 pandemic has changed public health policies and human and community behaviors through lockdowns and mandates. Governments are rapidly evolving policies to increase hospital capacity and supply personal protective equipment and other equipment to mitigate disease spread in affected regions. Current models that predict COVID-19 case counts and spread are complex by nature and offer limited explainability and generalizability. This has highlighted the need for accurate and robust outbreak prediction models that balance model parsimony and performance. OBJECTIVE: We sought to leverage readily accessible data sets extracted from multiple states to train and evaluate a parsimonious predictive model capable of identifying county-level risk of COVID-19 outbreaks on a day-to-day basis. METHODS: Our modeling approach leveraged the following data inputs: COVID-19 case counts per county per day and county populations. We developed an outbreak gold standard across California, Indiana, and Iowa. The model utilized a per capita running 7-day sum of the case counts per county per day and the mean cumulative case count to develop baseline values. The model was trained with data recorded between March 1 and August 31, 2020, and tested on data recorded between September 1 and October 31, 2020. RESULTS: The model reported sensitivities of 81%, 92%, and 90% for California, Indiana, and Iowa, respectively. The precision in each state was above 85% while specificity and accuracy scores were generally >95%. CONCLUSIONS: Our parsimonious model provides a generalizable and simple alternative approach to outbreak prediction. This methodology can be applied to diverse regions to help state officials and hospitals with resource allocation and to guide risk management, community education, and mitigation strategies. JMIR Publications 2021-07-26 /pmc/articles/PMC8315156/ /pubmed/34156964 http://dx.doi.org/10.2196/28812 Text en ©Agrayan K Gupta, Shaun J Grannis, Suranga N Kasthurirathne. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 26.07.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Gupta, Agrayan K Grannis, Shaun J Kasthurirathne, Suranga N Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets |
title | Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets |
title_full | Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets |
title_fullStr | Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets |
title_full_unstemmed | Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets |
title_short | Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets |
title_sort | evaluation of a parsimonious covid-19 outbreak prediction model: heuristic modeling approach using publicly available data sets |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315156/ https://www.ncbi.nlm.nih.gov/pubmed/34156964 http://dx.doi.org/10.2196/28812 |
work_keys_str_mv | AT guptaagrayank evaluationofaparsimoniouscovid19outbreakpredictionmodelheuristicmodelingapproachusingpubliclyavailabledatasets AT grannisshaunj evaluationofaparsimoniouscovid19outbreakpredictionmodelheuristicmodelingapproachusingpubliclyavailabledatasets AT kasthurirathnesurangan evaluationofaparsimoniouscovid19outbreakpredictionmodelheuristicmodelingapproachusingpubliclyavailabledatasets |