Cargando…

An automated computational approach to kinetic model discrimination and parameter estimation

We herein report experimental applications of a novel, automated computational approach to chemical reaction network (CRN) identification. This report shows the first chemical applications of an autonomous tool to identify the kinetic model and parameters of a process, when considering both catalyti...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Connor J., Seki, Hikaru, Dannheim, Friederike M., Willis, Mark J., Clemens, Graeme, Taylor, Brian A., Chamberlain, Thomas W., Bourne, Richard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315272/
https://www.ncbi.nlm.nih.gov/pubmed/34354841
http://dx.doi.org/10.1039/d1re00098e
_version_ 1783729692240510976
author Taylor, Connor J.
Seki, Hikaru
Dannheim, Friederike M.
Willis, Mark J.
Clemens, Graeme
Taylor, Brian A.
Chamberlain, Thomas W.
Bourne, Richard A.
author_facet Taylor, Connor J.
Seki, Hikaru
Dannheim, Friederike M.
Willis, Mark J.
Clemens, Graeme
Taylor, Brian A.
Chamberlain, Thomas W.
Bourne, Richard A.
author_sort Taylor, Connor J.
collection PubMed
description We herein report experimental applications of a novel, automated computational approach to chemical reaction network (CRN) identification. This report shows the first chemical applications of an autonomous tool to identify the kinetic model and parameters of a process, when considering both catalytic species and various integer and non-integer orders in the model's rate laws. This kinetic analysis methodology requires only the input of the species within the chemical system (starting materials, intermediates, products, etc.) and corresponding time-series concentration data to determine the kinetic information of the chemistry of interest. This is performed with minimal human interaction and several case studies were performed to show the wide scope and applicability of this process development tool. The approach described herein can be employed using experimental data from any source and the code for this methodology is also provided open-source.
format Online
Article
Text
id pubmed-8315272
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-83152722021-08-03 An automated computational approach to kinetic model discrimination and parameter estimation Taylor, Connor J. Seki, Hikaru Dannheim, Friederike M. Willis, Mark J. Clemens, Graeme Taylor, Brian A. Chamberlain, Thomas W. Bourne, Richard A. React Chem Eng Chemistry We herein report experimental applications of a novel, automated computational approach to chemical reaction network (CRN) identification. This report shows the first chemical applications of an autonomous tool to identify the kinetic model and parameters of a process, when considering both catalytic species and various integer and non-integer orders in the model's rate laws. This kinetic analysis methodology requires only the input of the species within the chemical system (starting materials, intermediates, products, etc.) and corresponding time-series concentration data to determine the kinetic information of the chemistry of interest. This is performed with minimal human interaction and several case studies were performed to show the wide scope and applicability of this process development tool. The approach described herein can be employed using experimental data from any source and the code for this methodology is also provided open-source. The Royal Society of Chemistry 2021-05-07 /pmc/articles/PMC8315272/ /pubmed/34354841 http://dx.doi.org/10.1039/d1re00098e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Taylor, Connor J.
Seki, Hikaru
Dannheim, Friederike M.
Willis, Mark J.
Clemens, Graeme
Taylor, Brian A.
Chamberlain, Thomas W.
Bourne, Richard A.
An automated computational approach to kinetic model discrimination and parameter estimation
title An automated computational approach to kinetic model discrimination and parameter estimation
title_full An automated computational approach to kinetic model discrimination and parameter estimation
title_fullStr An automated computational approach to kinetic model discrimination and parameter estimation
title_full_unstemmed An automated computational approach to kinetic model discrimination and parameter estimation
title_short An automated computational approach to kinetic model discrimination and parameter estimation
title_sort automated computational approach to kinetic model discrimination and parameter estimation
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315272/
https://www.ncbi.nlm.nih.gov/pubmed/34354841
http://dx.doi.org/10.1039/d1re00098e
work_keys_str_mv AT taylorconnorj anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT sekihikaru anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT dannheimfriederikem anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT willismarkj anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT clemensgraeme anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT taylorbriana anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT chamberlainthomasw anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT bournericharda anautomatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT taylorconnorj automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT sekihikaru automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT dannheimfriederikem automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT willismarkj automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT clemensgraeme automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT taylorbriana automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT chamberlainthomasw automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation
AT bournericharda automatedcomputationalapproachtokineticmodeldiscriminationandparameterestimation