Cargando…
Evaluation of interpretability methods for multivariate time series forecasting
Being able to interpret a model’s predictions is a crucial task in many machine learning applications. Specifically, local interpretability is important in determining why a model makes particular predictions. Despite the recent focus on interpretable Artificial Intelligence (AI), there have been fe...
Autores principales: | Ozyegen, Ozan, Ilic, Igor, Cevik, Mucahit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315500/ https://www.ncbi.nlm.nih.gov/pubmed/34764613 http://dx.doi.org/10.1007/s10489-021-02662-2 |
Ejemplares similares
-
Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19
por: Wu, Binrong, et al.
Publicado: (2022) -
Classifying multi-level product categories using dynamic masking and transformer models
por: Ozyegen, Ozan, et al.
Publicado: (2022) -
Multivariate Count Data Models for Time Series Forecasting
por: Shapovalova, Yuliya, et al.
Publicado: (2021) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022) -
Hierarchical attention network for multivariate time series long-term forecasting
por: Bi, Hongjing, et al.
Publicado: (2022)