Cargando…
Word embeddings and deep learning for location prediction: tracking Coronavirus from British and American tweets
With the propagation of the Coronavirus pandemic, current trends on determining its individual and societal impacts become increasingly important. Recent researches grant special attention to the Coronavirus social networks infodemic to study such impacts. For this aim, we think that applying a geol...
Autores principales: | Hasni, Sarra, Faiz, Sami |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315503/ https://www.ncbi.nlm.nih.gov/pubmed/34335992 http://dx.doi.org/10.1007/s13278-021-00777-5 |
Ejemplares similares
-
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021) -
Location Prediction for Tweets
por: Huang, Chieh-Yang, et al.
Publicado: (2019) -
Identifying tweets of personal health experience through word embedding and LSTM neural network
por: Jiang, Keyuan, et al.
Publicado: (2018) -
Deep generative learning of location-invariant visual word recognition
por: Di Bono, Maria Grazia, et al.
Publicado: (2013) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017)