Cargando…
Prediction of 30-Day Readmission After Stroke Using Machine Learning and Natural Language Processing
Background and Purpose: This study aims to determine whether machine learning (ML) and natural language processing (NLP) from electronic health records (EHR) improve the prediction of 30-day readmission after stroke. Methods: Among index stroke admissions between 2011 and 2016 at an academic medical...
Autores principales: | Lineback, Christina M., Garg, Ravi, Oh, Elissa, Naidech, Andrew M., Holl, Jane L., Prabhakaran, Shyam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315788/ https://www.ncbi.nlm.nih.gov/pubmed/34326805 http://dx.doi.org/10.3389/fneur.2021.649521 |
Ejemplares similares
-
Machine Learning-Enabled 30-Day Readmission Model for Stroke Patients
por: Darabi, Negar, et al.
Publicado: (2021) -
Predicting 30-Day Readmission for Stroke Using Machine Learning Algorithms: A Prospective Cohort Study
por: Chen, Yu-Ching, et al.
Publicado: (2022) -
Stroke nurse navigator utilization reduces unplanned 30-day readmission in stroke patients treated with thrombolysis
por: Jun-O'Connell, Adalia H., et al.
Publicado: (2023) -
Association between the LACE+ index and unplanned 30-day hospital readmissions in hospitalized patients with stroke
por: Jun-O'Connell, Adalia H., et al.
Publicado: (2022) -
Probing the Effective Treatment Thresholds for Alteplase in Acute Ischemic Stroke With Regression Discontinuity Designs
por: Naidech, Andrew M., et al.
Publicado: (2020)