Cargando…

Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision

Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discove...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, James A, Ndila, Carolyne M, Uyoga, Sophie, Macharia, Alexander, Nyutu, Gideon, Mohammed, Shebe, Ngetsa, Caroline, Mturi, Neema, Peshu, Norbert, Tsofa, Benjamin, Rockett, Kirk, Leopold, Stije, Kingston, Hugh, George, Elizabeth C, Maitland, Kathryn, Day, Nicholas PJ, Dondorp, Arjen M, Bejon, Philip, Williams, Thomas N, Holmes, Chris C, White, Nicholas J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315799/
https://www.ncbi.nlm.nih.gov/pubmed/34225842
http://dx.doi.org/10.7554/eLife.69698
_version_ 1783729775723937792
author Watson, James A
Ndila, Carolyne M
Uyoga, Sophie
Macharia, Alexander
Nyutu, Gideon
Mohammed, Shebe
Ngetsa, Caroline
Mturi, Neema
Peshu, Norbert
Tsofa, Benjamin
Rockett, Kirk
Leopold, Stije
Kingston, Hugh
George, Elizabeth C
Maitland, Kathryn
Day, Nicholas PJ
Dondorp, Arjen M
Bejon, Philip
Williams, Thomas N
Holmes, Chris C
White, Nicholas J
author_facet Watson, James A
Ndila, Carolyne M
Uyoga, Sophie
Macharia, Alexander
Nyutu, Gideon
Mohammed, Shebe
Ngetsa, Caroline
Mturi, Neema
Peshu, Norbert
Tsofa, Benjamin
Rockett, Kirk
Leopold, Stije
Kingston, Hugh
George, Elizabeth C
Maitland, Kathryn
Day, Nicholas PJ
Dondorp, Arjen M
Bejon, Philip
Williams, Thomas N
Holmes, Chris C
White, Nicholas J
author_sort Watson, James A
collection PubMed
description Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.
format Online
Article
Text
id pubmed-8315799
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-83157992021-07-28 Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision Watson, James A Ndila, Carolyne M Uyoga, Sophie Macharia, Alexander Nyutu, Gideon Mohammed, Shebe Ngetsa, Caroline Mturi, Neema Peshu, Norbert Tsofa, Benjamin Rockett, Kirk Leopold, Stije Kingston, Hugh George, Elizabeth C Maitland, Kathryn Day, Nicholas PJ Dondorp, Arjen M Bejon, Philip Williams, Thomas N Holmes, Chris C White, Nicholas J eLife Epidemiology and Global Health Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies. eLife Sciences Publications, Ltd 2021-07-06 /pmc/articles/PMC8315799/ /pubmed/34225842 http://dx.doi.org/10.7554/eLife.69698 Text en © 2021, Watson et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Epidemiology and Global Health
Watson, James A
Ndila, Carolyne M
Uyoga, Sophie
Macharia, Alexander
Nyutu, Gideon
Mohammed, Shebe
Ngetsa, Caroline
Mturi, Neema
Peshu, Norbert
Tsofa, Benjamin
Rockett, Kirk
Leopold, Stije
Kingston, Hugh
George, Elizabeth C
Maitland, Kathryn
Day, Nicholas PJ
Dondorp, Arjen M
Bejon, Philip
Williams, Thomas N
Holmes, Chris C
White, Nicholas J
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_full Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_fullStr Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_full_unstemmed Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_short Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_sort improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
topic Epidemiology and Global Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315799/
https://www.ncbi.nlm.nih.gov/pubmed/34225842
http://dx.doi.org/10.7554/eLife.69698
work_keys_str_mv AT watsonjamesa improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT ndilacarolynem improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT uyogasophie improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT machariaalexander improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT nyutugideon improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT mohammedshebe improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT ngetsacaroline improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT mturineema improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT peshunorbert improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT tsofabenjamin improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT rockettkirk improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT leopoldstije improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT kingstonhugh improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT georgeelizabethc improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT maitlandkathryn improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT daynicholaspj improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT dondorparjenm improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT bejonphilip improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT williamsthomasn improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT holmeschrisc improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT whitenicholasj improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision