Cargando…
Data-driven identification of complex disease phenotypes
Disease interaction in multimorbid patients is relevant to treatment and prognosis, yet poorly understood. In the present work, we combine approaches from network science, machine learning and computational phenotyping to assess interactions between two or more diseases in a transparent way across t...
Autores principales: | Strauss, Markus J., Niederkrotenthaler, Thomas, Thurner, Stefan, Kautzky-Willer, Alexandra, Klimek, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315834/ https://www.ncbi.nlm.nih.gov/pubmed/34314651 http://dx.doi.org/10.1098/rsif.2020.1040 |
Ejemplares similares
-
The effect of social balance on social fragmentation
por: Minh Pham, Tuan, et al.
Publicado: (2020) -
How the geometry of cities determines urban scaling laws
por: Molinero, Carlos, et al.
Publicado: (2021) -
Estimating data-driven coronavirus disease 2019 mitigation strategies for safe university reopening
por: Yang, Qihui, et al.
Publicado: (2022) -
How Specialist Aftercare Impacts Long-Term Readmission Risks in Elderly Patients With Metabolic, Cardiac, and Chronic Obstructive Pulmonary Diseases: Cohort Study Using Administrative Data
por: Kaleta, Michaela, et al.
Publicado: (2020) -
Occupational mobility and automation: a data-driven network model
por: del Rio-Chanona, R. Maria, et al.
Publicado: (2021)