Cargando…
The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite
The emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316339/ https://www.ncbi.nlm.nih.gov/pubmed/34315897 http://dx.doi.org/10.1038/s41467-021-24814-1 |
_version_ | 1783729839772008448 |
---|---|
author | Zhang, Min Wang, Chengqi Oberstaller, Jenna Thomas, Phaedra Otto, Thomas D. Casandra, Debora Boyapalle, Sandhya Adapa, Swamy R. Xu, Shulin Button-Simons, Katrina Mayho, Matthew Rayner, Julian C. Ferdig, Michael T. Jiang, Rays H. Y. Adams, John H. |
author_facet | Zhang, Min Wang, Chengqi Oberstaller, Jenna Thomas, Phaedra Otto, Thomas D. Casandra, Debora Boyapalle, Sandhya Adapa, Swamy R. Xu, Shulin Button-Simons, Katrina Mayho, Matthew Rayner, Julian C. Ferdig, Michael T. Jiang, Rays H. Y. Adams, John H. |
author_sort | Zhang, Min |
collection | PubMed |
description | The emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry out a large-scale forward-genetic phenotype screen in P. falciparum to identify genes allowing parasites to survive febrile temperatures. Screening identifies more than 200 P. falciparum mutants with differential responses to increased temperature. These mutants are more likely to be sensitive to artemisinin derivatives as well as to heightened oxidative stress. Major processes critical for P. falciparum tolerance to febrile temperatures and artemisinin include highly essential, conserved pathways associated with protein-folding, heat shock and proteasome-mediated degradation, and unexpectedly, isoprenoid biosynthesis, which originated from the ancestral genome of the parasite’s algal endosymbiont-derived plastid, the apicoplast. Apicoplast-targeted genes in general are upregulated in response to heat shock, as are other Plasmodium genes with orthologs in plant and algal genomes. Plasmodium falciparum parasites appear to exploit their innate febrile-response mechanisms to mediate resistance to artemisinin. Both responses depend on endosymbiont-derived genes in the parasite’s genome, suggesting a link to the evolutionary origins of Plasmodium parasites in free-living ancestors. |
format | Online Article Text |
id | pubmed-8316339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-83163392021-08-03 The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite Zhang, Min Wang, Chengqi Oberstaller, Jenna Thomas, Phaedra Otto, Thomas D. Casandra, Debora Boyapalle, Sandhya Adapa, Swamy R. Xu, Shulin Button-Simons, Katrina Mayho, Matthew Rayner, Julian C. Ferdig, Michael T. Jiang, Rays H. Y. Adams, John H. Nat Commun Article The emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry out a large-scale forward-genetic phenotype screen in P. falciparum to identify genes allowing parasites to survive febrile temperatures. Screening identifies more than 200 P. falciparum mutants with differential responses to increased temperature. These mutants are more likely to be sensitive to artemisinin derivatives as well as to heightened oxidative stress. Major processes critical for P. falciparum tolerance to febrile temperatures and artemisinin include highly essential, conserved pathways associated with protein-folding, heat shock and proteasome-mediated degradation, and unexpectedly, isoprenoid biosynthesis, which originated from the ancestral genome of the parasite’s algal endosymbiont-derived plastid, the apicoplast. Apicoplast-targeted genes in general are upregulated in response to heat shock, as are other Plasmodium genes with orthologs in plant and algal genomes. Plasmodium falciparum parasites appear to exploit their innate febrile-response mechanisms to mediate resistance to artemisinin. Both responses depend on endosymbiont-derived genes in the parasite’s genome, suggesting a link to the evolutionary origins of Plasmodium parasites in free-living ancestors. Nature Publishing Group UK 2021-07-27 /pmc/articles/PMC8316339/ /pubmed/34315897 http://dx.doi.org/10.1038/s41467-021-24814-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhang, Min Wang, Chengqi Oberstaller, Jenna Thomas, Phaedra Otto, Thomas D. Casandra, Debora Boyapalle, Sandhya Adapa, Swamy R. Xu, Shulin Button-Simons, Katrina Mayho, Matthew Rayner, Julian C. Ferdig, Michael T. Jiang, Rays H. Y. Adams, John H. The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite |
title | The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite |
title_full | The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite |
title_fullStr | The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite |
title_full_unstemmed | The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite |
title_short | The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite |
title_sort | apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316339/ https://www.ncbi.nlm.nih.gov/pubmed/34315897 http://dx.doi.org/10.1038/s41467-021-24814-1 |
work_keys_str_mv | AT zhangmin theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT wangchengqi theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT oberstallerjenna theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT thomasphaedra theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT ottothomasd theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT casandradebora theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT boyapallesandhya theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT adapaswamyr theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT xushulin theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT buttonsimonskatrina theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT mayhomatthew theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT raynerjulianc theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT ferdigmichaelt theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT jiangrayshy theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT adamsjohnh theapicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT zhangmin apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT wangchengqi apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT oberstallerjenna apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT thomasphaedra apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT ottothomasd apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT casandradebora apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT boyapallesandhya apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT adapaswamyr apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT xushulin apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT buttonsimonskatrina apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT mayhomatthew apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT raynerjulianc apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT ferdigmichaelt apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT jiangrayshy apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite AT adamsjohnh apicoplastlinktofeversurvivalandartemisininresistanceinthemalariaparasite |