Cargando…
Unfolding the multiscale structure of networks with dynamical Ollivier-Ricci curvature
Describing networks geometrically through low-dimensional latent metric spaces has helped design efficient learning algorithms, unveil network symmetries and study dynamical network processes. However, latent space embeddings are limited to specific classes of networks because incompatible metric sp...
Autores principales: | Gosztolai, Adam, Arnaudon, Alexis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316456/ https://www.ncbi.nlm.nih.gov/pubmed/34315911 http://dx.doi.org/10.1038/s41467-021-24884-1 |
Ejemplares similares
-
Ollivier Ricci curvature of directed hypergraphs
por: Eidi, Marzieh, et al.
Publicado: (2020) -
Ollivier-Ricci Curvature-Based Method to Community Detection in Complex Networks
por: Sia, Jayson, et al.
Publicado: (2019) -
Ricci Curvature-Based Semi-Supervised Learning on an Attributed Network
por: Wu, Wei, et al.
Publicado: (2021) -
Comparative analysis of two discretizations of Ricci curvature for complex networks
por: Samal, Areejit, et al.
Publicado: (2018) -
Measuring robustness of brain networks in autism spectrum disorder with Ricci curvature
por: Simhal, Anish K., et al.
Publicado: (2020)