Cargando…

Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints

Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with gi...

Descripción completa

Detalles Bibliográficos
Autores principales: Vallarano, Nicolò, Bruno, Matteo, Marchese, Emiliano, Trapani, Giuseppe, Saracco, Fabio, Cimini, Giulio, Zanon, Mario, Squartini, Tiziano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316481/
https://www.ncbi.nlm.nih.gov/pubmed/34315920
http://dx.doi.org/10.1038/s41598-021-93830-4
_version_ 1783729861752258560
author Vallarano, Nicolò
Bruno, Matteo
Marchese, Emiliano
Trapani, Giuseppe
Saracco, Fabio
Cimini, Giulio
Zanon, Mario
Squartini, Tiziano
author_facet Vallarano, Nicolò
Bruno, Matteo
Marchese, Emiliano
Trapani, Giuseppe
Saracco, Fabio
Cimini, Giulio
Zanon, Mario
Squartini, Tiziano
author_sort Vallarano, Nicolò
collection PubMed
description Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
format Online
Article
Text
id pubmed-8316481
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83164812021-07-28 Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints Vallarano, Nicolò Bruno, Matteo Marchese, Emiliano Trapani, Giuseppe Saracco, Fabio Cimini, Giulio Zanon, Mario Squartini, Tiziano Sci Rep Article Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work. Nature Publishing Group UK 2021-07-27 /pmc/articles/PMC8316481/ /pubmed/34315920 http://dx.doi.org/10.1038/s41598-021-93830-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Vallarano, Nicolò
Bruno, Matteo
Marchese, Emiliano
Trapani, Giuseppe
Saracco, Fabio
Cimini, Giulio
Zanon, Mario
Squartini, Tiziano
Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
title Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
title_full Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
title_fullStr Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
title_full_unstemmed Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
title_short Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
title_sort fast and scalable likelihood maximization for exponential random graph models with local constraints
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316481/
https://www.ncbi.nlm.nih.gov/pubmed/34315920
http://dx.doi.org/10.1038/s41598-021-93830-4
work_keys_str_mv AT vallaranonicolo fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints
AT brunomatteo fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints
AT marcheseemiliano fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints
AT trapanigiuseppe fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints
AT saraccofabio fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints
AT ciminigiulio fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints
AT zanonmario fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints
AT squartinitiziano fastandscalablelikelihoodmaximizationforexponentialrandomgraphmodelswithlocalconstraints