Cargando…
Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro
Lactobacillus plantarum (renamed as Lactiplantibacillus plantarum) has been isolated from many sources but very rarely from rhizospheric soil. This is the first report on isolation and assessment of probiotic capabilities of L. plantarum strains isolated from rhizospheric soil. The isolates were con...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316525/ https://www.ncbi.nlm.nih.gov/pubmed/34315963 http://dx.doi.org/10.1038/s41598-021-94776-3 |
_version_ | 1783729867670421504 |
---|---|
author | Singhal, Neelja Singh, Nambram Somendro Mohanty, Shilpa Kumar, Manish Virdi, Jugsharan Singh |
author_facet | Singhal, Neelja Singh, Nambram Somendro Mohanty, Shilpa Kumar, Manish Virdi, Jugsharan Singh |
author_sort | Singhal, Neelja |
collection | PubMed |
description | Lactobacillus plantarum (renamed as Lactiplantibacillus plantarum) has been isolated from many sources but very rarely from rhizospheric soil. This is the first report on isolation and assessment of probiotic capabilities of L. plantarum strains isolated from rhizospheric soil. The isolates were confirmed by 16S rRNA gene sequencing and named as NS14, NS16 and NGG. All the isolates were evaluated for bile salt hydrolysis, hypocholestrolemic potential and probiotic attributes. Our results indicated that all the strains harboured bsh and showed in vitro cholesterol assimilation capabilities which increased when bile salts were also present in the culture medium. Also, all the strains remained viable at high temperatures and in the presence of NaCl, lysozyme, simulated gastric juice, bile salts and, exhibited auto- and co-aggregation capabilities. Additionally, L. plantarum strain NS14 survived in the presence of phenols, acidic environment (pH 2–3) and was resistant to many clinically relevant antibiotics. Since, L. plantarum NS14 exhibited most of the desirable and essential characteristics of a probiotic it should be further investigated as a potent probiotic with an additional benefit as a hypocholesterolemic biotherapeutic. Moreover, rhizosphere can be explored as a useful ecological niche for isolating microorganisms with biotechnological and probiotic potential. |
format | Online Article Text |
id | pubmed-8316525 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-83165252021-07-29 Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro Singhal, Neelja Singh, Nambram Somendro Mohanty, Shilpa Kumar, Manish Virdi, Jugsharan Singh Sci Rep Article Lactobacillus plantarum (renamed as Lactiplantibacillus plantarum) has been isolated from many sources but very rarely from rhizospheric soil. This is the first report on isolation and assessment of probiotic capabilities of L. plantarum strains isolated from rhizospheric soil. The isolates were confirmed by 16S rRNA gene sequencing and named as NS14, NS16 and NGG. All the isolates were evaluated for bile salt hydrolysis, hypocholestrolemic potential and probiotic attributes. Our results indicated that all the strains harboured bsh and showed in vitro cholesterol assimilation capabilities which increased when bile salts were also present in the culture medium. Also, all the strains remained viable at high temperatures and in the presence of NaCl, lysozyme, simulated gastric juice, bile salts and, exhibited auto- and co-aggregation capabilities. Additionally, L. plantarum strain NS14 survived in the presence of phenols, acidic environment (pH 2–3) and was resistant to many clinically relevant antibiotics. Since, L. plantarum NS14 exhibited most of the desirable and essential characteristics of a probiotic it should be further investigated as a potent probiotic with an additional benefit as a hypocholesterolemic biotherapeutic. Moreover, rhizosphere can be explored as a useful ecological niche for isolating microorganisms with biotechnological and probiotic potential. Nature Publishing Group UK 2021-07-27 /pmc/articles/PMC8316525/ /pubmed/34315963 http://dx.doi.org/10.1038/s41598-021-94776-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Singhal, Neelja Singh, Nambram Somendro Mohanty, Shilpa Kumar, Manish Virdi, Jugsharan Singh Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro |
title | Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro |
title_full | Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro |
title_fullStr | Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro |
title_full_unstemmed | Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro |
title_short | Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro |
title_sort | rhizospheric lactobacillus plantarum (lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316525/ https://www.ncbi.nlm.nih.gov/pubmed/34315963 http://dx.doi.org/10.1038/s41598-021-94776-3 |
work_keys_str_mv | AT singhalneelja rhizosphericlactobacillusplantarumlactiplantibacillusplantarumstrainsexhibitbilesalthydrolysishypocholestrolemicandprobioticcapabilitiesinvitro AT singhnambramsomendro rhizosphericlactobacillusplantarumlactiplantibacillusplantarumstrainsexhibitbilesalthydrolysishypocholestrolemicandprobioticcapabilitiesinvitro AT mohantyshilpa rhizosphericlactobacillusplantarumlactiplantibacillusplantarumstrainsexhibitbilesalthydrolysishypocholestrolemicandprobioticcapabilitiesinvitro AT kumarmanish rhizosphericlactobacillusplantarumlactiplantibacillusplantarumstrainsexhibitbilesalthydrolysishypocholestrolemicandprobioticcapabilitiesinvitro AT virdijugsharansingh rhizosphericlactobacillusplantarumlactiplantibacillusplantarumstrainsexhibitbilesalthydrolysishypocholestrolemicandprobioticcapabilitiesinvitro |