Cargando…
2D–3D reconstruction of distal forearm bone from actual X-ray images of the wrist using convolutional neural networks
The purpose of the study was to develop a deep learning network for estimating and constructing highly accurate 3D bone models directly from actual X-ray images and to verify its accuracy. The data used were 173 computed tomography (CT) images and 105 actual X-ray images of a healthy wrist joint. To...
Autores principales: | Shiode, Ryoya, Kabashima, Mototaka, Hiasa, Yuta, Oka, Kunihiro, Murase, Tsuyoshi, Sato, Yoshinobu, Otake, Yoshito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316567/ https://www.ncbi.nlm.nih.gov/pubmed/34315946 http://dx.doi.org/10.1038/s41598-021-94634-2 |
Ejemplares similares
-
Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays
por: Oka, Kunihiro, et al.
Publicado: (2021) -
Arthroscopic Debridement of Elbow Osteoarthritis Using CT-Based Computer-Aided Navigation Systems Is Accurate
por: Shiode, Ryoya, et al.
Publicado: (2021) -
Defining occult injuries of the distal forearm and wrist in children
por: Elvey, Michael, et al.
Publicado: (2016) -
Translation of Cellular Protein Localization Using Convolutional Networks
por: Shigene, Kei, et al.
Publicado: (2021) -
Utility of Distal Forearm DXA as a Screening Tool for Primary Osteoporotic Fragility Fractures of the Distal Radius: A Case-Control Study
por: Miyamura, Satoshi, et al.
Publicado: (2020)