Cargando…
Current Practices in Missing Data Handling for Interrupted Time Series Studies Performed on Individual-Level Data: A Scoping Review in Health Research
OBJECTIVE: Missing data can produce biased estimates in interrupted time series (ITS) analyses. We reviewed recent ITS investigations on health topics for determining 1) the data management strategies and statistical analysis performed, 2) how often missing data were considered and, if so, how they...
Autores principales: | Bazo-Alvarez, Juan Carlos, Morris, Tim P, Carpenter, James R, Petersen, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316757/ https://www.ncbi.nlm.nih.gov/pubmed/34326669 http://dx.doi.org/10.2147/CLEP.S314020 |
Ejemplares similares
-
Handling Missing Values in Interrupted Time Series Analysis of Longitudinal Individual-Level Data
por: Bazo-Alvarez, Juan Carlos, et al.
Publicado: (2020) -
Health indicator recording in UK primary care electronic health records: key implications for handling missing data
por: Petersen, Irene, et al.
Publicado: (2019) -
Weighted multiple imputation of ethnicity data that are missing not at random in primary care databases
por: Pham, Tra My, et al.
Publicado: (2017) -
The prevention and handling of the missing data
por: Kang, Hyun
Publicado: (2013) -
A four-step strategy for handling missing outcome data in randomised trials affected by a pandemic
por: Cro, Suzie, et al.
Publicado: (2020)