Cargando…
Modelling disease transmission from touchscreen user interfaces
The extensive use of touchscreens for all manner of human–computer interactions has made them plausible instruments of touch-mediated disease transmission. To that end, we employ stochastic simulations to model human–fomite interaction with a distinct focus on touchscreen interfaces. The timings and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316822/ https://www.ncbi.nlm.nih.gov/pubmed/34350020 http://dx.doi.org/10.1098/rsos.210625 |
Sumario: | The extensive use of touchscreens for all manner of human–computer interactions has made them plausible instruments of touch-mediated disease transmission. To that end, we employ stochastic simulations to model human–fomite interaction with a distinct focus on touchscreen interfaces. The timings and frequency of interactions from within a closed population of infectious and susceptible individuals was modelled using a queuing network. A pseudo-reproductive number R was used to compare outcomes under various parameter conditions. We then apply the simulation to a specific real-world scenario; namely that of airport self-check-in and baggage drop. A counterintuitive result was that R decreased with increased touch rates required for touchscreen interaction. Additionally, as one of few parameters to be controlled, the rate of cleaning/disinfecting screens plays an essential role in mitigating R, though alternative technological strategies could prove more effective. The simulation model developed provides a foundation for future advances in more sophisticated fomite disease-transmission modelling. |
---|