Cargando…
Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study
BACKGROUND: The supervised deep learning approach provides state-of-the-art performance in a variety of fundus image classification tasks, but it is not applicable for screening tasks with numerous or unknown disease types. The unsupervised anomaly detection (AD) approach, which needs only normal sa...
Autores principales: | Han, Yong, Li, Weiming, Liu, Mengmeng, Wu, Zhiyuan, Zhang, Feng, Liu, Xiangtong, Tao, Lixin, Li, Xia, Guo, Xiuhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317033/ https://www.ncbi.nlm.nih.gov/pubmed/34255681 http://dx.doi.org/10.2196/27822 |
Ejemplares similares
-
The Effect of the COVID-19 Vaccine on Daily Cases and Deaths Based on Global Vaccine Data
por: Li, Zhiwei, et al.
Publicado: (2021) -
Fundus Autofluorescence Imaging in an Ocular Screening Program
por: Kolomeyer, A. M., et al.
Publicado: (2012) -
Comparison of Color Fundus Photography, Infrared Fundus Photography, and Optical Coherence Tomography in Detecting Retinal Hamartoma in Patients with Tuberous Sclerosis Complex
por: Bai, Da-Yong, et al.
Publicado: (2016) -
Deep-Learning Model of ResNet Combined with CBAM for Malignant–Benign Pulmonary Nodules Classification on Computed Tomography Images
por: Zhang, Yanfei, et al.
Publicado: (2023) -
Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs?
por: Biswas, Sangeeta, et al.
Publicado: (2022)