Cargando…

Resistance to wheat rusts identified in wheat/Amblyopyrum muticum chromosome introgressions

Wheat (Triticum aestivum L.) rusts are a worldwide production problem. Plant breeders have used genetic resistance to combat these fungi. However, single‐gene resistance is rapidly overcome as a result of frequent occurrence of new virulent fungal strains. Thus, a supply of new resistance sources is...

Descripción completa

Detalles Bibliográficos
Autores principales: Fellers, John P., Matthews, Angie, Fritz, Allan K., Rouse, Matthew N., Grewal, Surbhi, Hubbart‐Edwards, Stella, King, Ian P., King, Julie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317048/
https://www.ncbi.nlm.nih.gov/pubmed/34354296
http://dx.doi.org/10.1002/csc2.20120
Descripción
Sumario:Wheat (Triticum aestivum L.) rusts are a worldwide production problem. Plant breeders have used genetic resistance to combat these fungi. However, single‐gene resistance is rapidly overcome as a result of frequent occurrence of new virulent fungal strains. Thus, a supply of new resistance sources is continually needed, and new resistance sources are limited within hexaploid wheat genetic stocks. Wild relatives are able to be a resource for new resistance genes but are hindered because of chromosome incapability with domesticated wheats. Twenty‐eight double‐haploid hexaploid wheat/Amblyopyrum muticum (Boiss.) Eig introgression lines, with introgressions covering the majority of the T genome, were evaluated for resistance to Puccinia triticina Erikss., P. graminis Pers.:Pers. f.sp. tritici Erikss. & E. Henning, and P. striiformis Westend. f.sp. tritici Erikss.. At the seedling level, four lines were resistant to races of P. triticina, six lines were resistant to P. graminis, and 15 lines were resistant to P. striiformis. At the adult stage, 16 lines were resistant to P. triticina. Line 355 had resistance to all three rusts and line 161 had resistance to all tested races of P. triticina. Some of these lines will require further work to reduce the size of the introgressed segment; however, lines 92 and 355 have very small fragments and can be used directly as new resistance donors.