Cargando…
lgpr: an interpretable non-parametric method for inferring covariate effects from longitudinal data
MOTIVATION: Longitudinal study designs are indispensable for studying disease progression. Inferring covariate effects from longitudinal data, however, requires interpretable methods that can model complicated covariance structures and detect non-linear effects of both categorical and continuous cov...
Autores principales: | Timonen, Juho, Mannerström, Henrik, Vehtari, Aki, Lähdesmäki, Harri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317115/ https://www.ncbi.nlm.nih.gov/pubmed/33471072 http://dx.doi.org/10.1093/bioinformatics/btab021 |
Ejemplares similares
-
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
por: Cheng, Lu, et al.
Publicado: (2019) -
Characterization and non-parametric modeling of the developing serum proteome during infancy and early childhood
por: Lietzén, Niina, et al.
Publicado: (2018) -
Bayesian metabolic flux analysis reveals intracellular flux couplings
por: Heinonen, Markus, et al.
Publicado: (2019) -
Probabilistic Inference of Transcription Factor Binding from Multiple Data Sources
por: Lähdesmäki, Harri, et al.
Publicado: (2008) -
A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways
por: Äijö, Tarmo, et al.
Publicado: (2016)