Cargando…

A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase

[Image: see text] Nature employs high-energy metal-oxo intermediates embedded within enzyme active sites to perform challenging oxidative transformations with remarkable selectivity. Understanding how different local metal-oxo coordination environments control intermediate reactivity and catalytic f...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortmayer, Mary, Hardy, Florence J., Quesne, Matthew G., Fisher, Karl, Levy, Colin, Heyes, Derren J., Catlow, C. Richard A., de Visser, Sam P., Rigby, Stephen E. J., Hay, Sam, Green, Anthony P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317151/
https://www.ncbi.nlm.nih.gov/pubmed/34337604
http://dx.doi.org/10.1021/jacsau.1c00145
_version_ 1783730014964940800
author Ortmayer, Mary
Hardy, Florence J.
Quesne, Matthew G.
Fisher, Karl
Levy, Colin
Heyes, Derren J.
Catlow, C. Richard A.
de Visser, Sam P.
Rigby, Stephen E. J.
Hay, Sam
Green, Anthony P.
author_facet Ortmayer, Mary
Hardy, Florence J.
Quesne, Matthew G.
Fisher, Karl
Levy, Colin
Heyes, Derren J.
Catlow, C. Richard A.
de Visser, Sam P.
Rigby, Stephen E. J.
Hay, Sam
Green, Anthony P.
author_sort Ortmayer, Mary
collection PubMed
description [Image: see text] Nature employs high-energy metal-oxo intermediates embedded within enzyme active sites to perform challenging oxidative transformations with remarkable selectivity. Understanding how different local metal-oxo coordination environments control intermediate reactivity and catalytic function is a long-standing objective. However, conducting structure–activity relationships directly in active sites has proven challenging due to the limited range of amino acid substitutions achievable within the constraints of the genetic code. Here, we use an expanded genetic code to examine the impact of hydrogen bonding interactions on ferryl heme structure and reactivity, by replacing the N–H group of the active site Trp51 of cytochrome c peroxidase by an S atom. Removal of a single hydrogen bond stabilizes the porphyrin π-cation radical state of CcP W191F compound I. In contrast, this modification leads to more basic and reactive neutral ferryl heme states, as found in CcP W191F compound II and the wild-type ferryl heme-Trp191 radical pair of compound I. This increased reactivity manifests in a >60-fold activity increase toward phenolic substrates but remarkably has negligible effects on oxidation of the biological redox partner cytc. Our data highlight how Trp51 tunes the lifetimes of key ferryl intermediates and works in synergy with the redox active Trp191 and a well-defined substrate binding site to regulate catalytic function. More broadly, this work shows how noncanonical substitutions can advance our understanding of active site features governing metal-oxo structure and reactivity.
format Online
Article
Text
id pubmed-8317151
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-83171512021-07-28 A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase Ortmayer, Mary Hardy, Florence J. Quesne, Matthew G. Fisher, Karl Levy, Colin Heyes, Derren J. Catlow, C. Richard A. de Visser, Sam P. Rigby, Stephen E. J. Hay, Sam Green, Anthony P. JACS Au [Image: see text] Nature employs high-energy metal-oxo intermediates embedded within enzyme active sites to perform challenging oxidative transformations with remarkable selectivity. Understanding how different local metal-oxo coordination environments control intermediate reactivity and catalytic function is a long-standing objective. However, conducting structure–activity relationships directly in active sites has proven challenging due to the limited range of amino acid substitutions achievable within the constraints of the genetic code. Here, we use an expanded genetic code to examine the impact of hydrogen bonding interactions on ferryl heme structure and reactivity, by replacing the N–H group of the active site Trp51 of cytochrome c peroxidase by an S atom. Removal of a single hydrogen bond stabilizes the porphyrin π-cation radical state of CcP W191F compound I. In contrast, this modification leads to more basic and reactive neutral ferryl heme states, as found in CcP W191F compound II and the wild-type ferryl heme-Trp191 radical pair of compound I. This increased reactivity manifests in a >60-fold activity increase toward phenolic substrates but remarkably has negligible effects on oxidation of the biological redox partner cytc. Our data highlight how Trp51 tunes the lifetimes of key ferryl intermediates and works in synergy with the redox active Trp191 and a well-defined substrate binding site to regulate catalytic function. More broadly, this work shows how noncanonical substitutions can advance our understanding of active site features governing metal-oxo structure and reactivity. American Chemical Society 2021-05-14 /pmc/articles/PMC8317151/ /pubmed/34337604 http://dx.doi.org/10.1021/jacsau.1c00145 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Ortmayer, Mary
Hardy, Florence J.
Quesne, Matthew G.
Fisher, Karl
Levy, Colin
Heyes, Derren J.
Catlow, C. Richard A.
de Visser, Sam P.
Rigby, Stephen E. J.
Hay, Sam
Green, Anthony P.
A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase
title A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase
title_full A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase
title_fullStr A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase
title_full_unstemmed A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase
title_short A Noncanonical Tryptophan Analogue Reveals an Active Site Hydrogen Bond Controlling Ferryl Reactivity in a Heme Peroxidase
title_sort noncanonical tryptophan analogue reveals an active site hydrogen bond controlling ferryl reactivity in a heme peroxidase
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317151/
https://www.ncbi.nlm.nih.gov/pubmed/34337604
http://dx.doi.org/10.1021/jacsau.1c00145
work_keys_str_mv AT ortmayermary anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT hardyflorencej anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT quesnematthewg anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT fisherkarl anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT levycolin anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT heyesderrenj anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT catlowcricharda anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT devissersamp anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT rigbystephenej anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT haysam anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT greenanthonyp anoncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT ortmayermary noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT hardyflorencej noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT quesnematthewg noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT fisherkarl noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT levycolin noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT heyesderrenj noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT catlowcricharda noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT devissersamp noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT rigbystephenej noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT haysam noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase
AT greenanthonyp noncanonicaltryptophananaloguerevealsanactivesitehydrogenbondcontrollingferrylreactivityinahemeperoxidase